20,338 research outputs found

    Sparse Codes for Speech Predict Spectrotemporal Receptive Fields in the Inferior Colliculus

    Get PDF
    We have developed a sparse mathematical representation of speech that minimizes the number of active model neurons needed to represent typical speech sounds. The model learns several well-known acoustic features of speech such as harmonic stacks, formants, onsets and terminations, but we also find more exotic structures in the spectrogram representation of sound such as localized checkerboard patterns and frequency-modulated excitatory subregions flanked by suppressive sidebands. Moreover, several of these novel features resemble neuronal receptive fields reported in the Inferior Colliculus (IC), as well as auditory thalamus and cortex, and our model neurons exhibit the same tradeoff in spectrotemporal resolution as has been observed in IC. To our knowledge, this is the first demonstration that receptive fields of neurons in the ascending mammalian auditory pathway beyond the auditory nerve can be predicted based on coding principles and the statistical properties of recorded sounds.Comment: For Supporting Information, see PLoS website: http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.100259

    An experimental study of the buckling of complete spherical shells

    Get PDF
    Buckling of complete spherical shells to examine Tsien energy hypothesi

    Analysis of shell-type structures subjected to time-dependent mechanical and thermal loading

    Get PDF
    A general mathematical model and solution methodologies are being developed for analyzing structural response of thin, metallic shell-type structures under large transient, cyclic, or static thermomechanical loads. Among the system responses, which were associated with these load conditions, were thermal buckling, creep buckling, and ratcheting. Thus, geometric as well as material-type nonlinearities (of high order) can be anticipated and must be considered in the development of the mathematical model. Furthermore, this must also be accommodated in the solution process

    A finite element program for postbuckling calculations (PSTBKL)

    Get PDF
    The object of the research reported herein was to develop a general mathematical model and solution methodologies for analyzing the structural response of thin, metallic shell structures under large transient, cyclic, or static thermochemical loads. This report describes the computer program resulting from the research. Among the system responses associated with these loads and conditions are thermal buckling, creep buckling, and ratcheting. Thus geometric and material nonlinearities (of high order) have been anticipated and are considered in developing the mathematical model. The methodology is demonstrated through different problems of extension, shear, and of planar curved beams. Moreover, importance of the inclusion of large strains is clearly demonstrated, through the chosen applications

    Analysis of large, non-isothermal elastic-visco-plastic deformations

    Get PDF
    The development of a general mathematical model and solutions of test problems to analyze large nonisothermal elasto-visco-plastic deformatisms of structures is discussed. Geometric and material type nonlinearities of higher order are present in the development of the mathematical model and in the developed solution methodology

    Non-isothermal elastoviscoplastic analysis of planar curved beams

    Get PDF
    The development of a general mathematical model and solution methodologies, to examine the behavior of thin structural elements such as beams, rings, and arches, subjected to large nonisothermal elastoviscoplastic deformations is presented. Thus, geometric as well as material type nonlinearities of higher order are present in the analysis. For this purpose a complete true abinito rate theory of kinematics and kinetics for thin bodies, without any restriction on the magnitude of the transformation is presented. A previously formulated elasto-thermo-viscoplastic material constitutive law is employed in the analysis. The methodology is demonstrated through three different straight and curved beams problems

    Analysis of shell type structures subjected to time dependent mechanical and thermal loading

    Get PDF
    A general mathematical model and solution methodologies for analyzing structural response of thin, metallic shell-type structures under large transient, cyclic or static thermomechanical loads is considered. Among the system responses, which are associated with these load conditions, are thermal buckling, creep buckling and ratchetting. Thus, geometric as well as material-type nonlinearities (of high order) can be anticipated and must be considered in the development of the mathematical model

    Space environment operation of experimental hydrazine reactors Final report

    Get PDF
    Correlation of low temperature high vacuum hydrazine ignition properties of Shell 405 catalyst with concentration of adsorbed gase

    Operational applications of NOAA-VHRR imagery in Alaska

    Get PDF
    Near-real time operational applications of NOAA satellite enhanced thermal infrared imagery to snow monitoring for river flood forecasts, and a photographic overlay technique of imagery to enhance snowcover are presented. Ground truth comparisons show a thermal accuracy of approximately + or - 1 C for detection of surface radiative temperatures. The application of NOAA imagery to flood mapping is also presented

    Estimation of attainable leading-edge thrust for wings at subsonic and supersonic speeds

    Get PDF
    The factors which place limits on the theoretical leading edge thrust are identified. An empirical method for the estimation of attainable thrust is presented. The method is based on the use of simple sweep theory to permit a two dimensional analysis, the use of theoretical airfoil programs to define thrust dependence on local geometric characteristics, and the examination of experimental two dimensional airfoil data to define limitations imposed by local Mach numbers and Reynolds numbers. Comparisons of theoretical and experimental aerodynamic characteristics for a series of wing body configurations are examined
    • …
    corecore