111 research outputs found
Recommended from our members
Business Model Innovation: How Iconic Business Models Emerge
Despite ample research on the topic of business model innovation, little is known about the cognitive processes whereby some innovative business models gain the status of iconic representations of particular types of firms. This study addresses the question: How do iconic business models emerge? In other words: How do innovative business models become prototypical exemplars for new categories of firms? We focus on the case of Airbnb, and analyze how six mainstream business media publications discussed Airbnb between 2008 and 2013. The cognitive process whereby Airbnb’s business model became the iconic business model for the sharing economy involved three phases. First, these publications drew on multiple analogies to try to assimilate Airbnb’s innovative business model into their existing system of categories. Second, they developed a more nuanced understanding of Airbnb’s business model. Finally, they established it as the prototypical exemplar of a new type of organization. We contribute to business model research by providing an elaborated definition of the notion of the iconic business model which is rooted in social categorization research, and by theorizing the cognitive process that underpins the emergence of iconic business models. Our study also complements research on the role of analogical reasoning in business model innovation. Finally, we complement the market categorization literature by documenting a case of the emergence of a prototypical exemplar
Finding and evaluating community structure in networks
We propose and study a set of algorithms for discovering community structure
in networks -- natural divisions of network nodes into densely connected
subgroups. Our algorithms all share two definitive features: first, they
involve iterative removal of edges from the network to split it into
communities, the edges removed being identified using one of a number of
possible "betweenness" measures, and second, these measures are, crucially,
recalculated after each removal. We also propose a measure for the strength of
the community structure found by our algorithms, which gives us an objective
metric for choosing the number of communities into which a network should be
divided. We demonstrate that our algorithms are highly effective at discovering
community structure in both computer-generated and real-world network data, and
show how they can be used to shed light on the sometimes dauntingly complex
structure of networked systems.Comment: 16 pages, 13 figure
Academic team formation as evolving hypergraphs
This paper quantitatively explores the social and socio-semantic patterns of
constitution of academic collaboration teams. To this end, we broadly underline
two critical features of social networks of knowledge-based collaboration:
first, they essentially consist of group-level interactions which call for
team-centered approaches. Formally, this induces the use of hypergraphs and
n-adic interactions, rather than traditional dyadic frameworks of interaction
such as graphs, binding only pairs of agents. Second, we advocate the joint
consideration of structural and semantic features, as collaborations are
allegedly constrained by both of them. Considering these provisions, we propose
a framework which principally enables us to empirically test a series of
hypotheses related to academic team formation patterns. In particular, we
exhibit and characterize the influence of an implicit group structure driving
recurrent team formation processes. On the whole, innovative production does
not appear to be correlated with more original teams, while a polarization
appears between groups composed of experts only or non-experts only, altogether
corresponding to collectives with a high rate of repeated interactions
Null Models of Economic Networks: The Case of the World Trade Web
In all empirical-network studies, the observed properties of economic
networks are informative only if compared with a well-defined null model that
can quantitatively predict the behavior of such properties in constrained
graphs. However, predictions of the available null-model methods can be derived
analytically only under assumptions (e.g., sparseness of the network) that are
unrealistic for most economic networks like the World Trade Web (WTW). In this
paper we study the evolution of the WTW using a recently-proposed family of
null network models. The method allows to analytically obtain the expected
value of any network statistic across the ensemble of networks that preserve on
average some local properties, and are otherwise fully random. We compare
expected and observed properties of the WTW in the period 1950-2000, when
either the expected number of trade partners or total country trade is kept
fixed and equal to observed quantities. We show that, in the binary WTW,
node-degree sequences are sufficient to explain higher-order network properties
such as disassortativity and clustering-degree correlation, especially in the
last part of the sample. Conversely, in the weighted WTW, the observed sequence
of total country imports and exports are not sufficient to predict higher-order
patterns of the WTW. We discuss some important implications of these findings
for international-trade models.Comment: 39 pages, 46 figures, 2 table
Controlling centrality in complex networks
Spectral centrality measures allow to identify influential individuals in social groups, to rank Web pages by popularity, and even to determine the impact of scientific researches. The centrality score of a node within a network crucially depends on the entire pattern of connections, so that the usual approach is to compute node centralities once the network structure is assigned. We face here with the inverse problem, that is, we study how to modify the centrality scores of the nodes by acting on the structure of a given network. We show that there exist particular subsets of nodes, called controlling sets, which can assign any prescribed set of centrality values to all the nodes of a graph, by cooperatively tuning the weights of their out-going links. We found that many large networks from the real world have surprisingly small controlling sets, containing even less than 5 – 10% of the nodes
Overcoming network overload and redundancy in inter-organizational networks:the roles of potential and latent ties
This paper builds on Granovetter's distinction between strong and weak ties [Granovetter, M. S. 1973. The strength of weak ties. Amer. J. Sociol. 78(6) 1360–1380] in order to respond to recent calls for a more dynamic and processual understanding of networks. The concepts of potential and latent tie are deductively identified, and their implications for understanding how and why networks emerge, evolve, and change are explored. A longitudinal empirical study conducted with companies operating in the European motorsport industry reveals that firms take strategic actions to search for potential ties and reactivate latent ties in order to solve problems of network redundancy and overload. Examples are given, and their characteristics are examined to provide theoretical elaboration of the relationship between the types of tie and network evolution. These conceptual and empirical insights move understanding of the managerial challenge of building effective networks beyond static structural contingency models of optimal network forms to highlight the processes and capabilities of dynamic relationship building and network development. In so doing, this paper highlights the interrelationship between search and redundancy and the scope for strategic action alongside path dependence and structural influences on network processes
Proposing Ties in a Dense Hypergraph of Academics
Nearly all personal relationships exhibit a multiplexity where people relate to one another in many different ways. Using a set of faculty CVs from multiple research institutions, we mined a hypergraph of researchers connected by co-occurring named entities (people, places and organizations). This results in an edge-sparse, link-dense structure with weighted connections that accurately encodes faculty department structure. We introduce a novel model that generates dyadic proposals of how well two nodes should be connected based on both the mass and distributional similarity of links through shared neighbors. Similar link prediction tasks have been primarily explored in unipartite settings, but for hypergraphs where hyper-edges out-number nodes 25-to-1, accounting for link similarity is crucial. Our model is tested by using its proposals to recover link strengths from four systematically lesioned versions of the graph. The model is also compared to other link prediction methods in a static setting. Our results show the model is able to recover a majority of link mass in various settings and that it out-performs other link prediction methods. Overall, the results support the descriptive fidelity of our text-mined, named entity hypergraph of multi-faceted relationships and underscore the importance of link similarity in analyzing link-dense multiplexitous relationships
- …