13 research outputs found

    The Non-Catalytic Carboxyl-Terminal Domain of ARFGAP1 Regulates Actin Cytoskeleton Reorganization by Antagonizing the Activation of Rac1

    Get PDF
    The regulation of the actin cytoskeleton and membrane trafficking is coordinated in mammalian cells. One of the regulators of membrane traffic, the small GTP-binding protein ARF1, also activates phosphatidylinositol kinases that in turn affect actin polymerization. ARFGAP1 is a GTPase activating protein (GAP) for ARF1 that is found on Golgi membranes. We present evidence that ARFGAP1 not only serves as a GAP for ARF1, but also can affect the actin cytoskeleton.As cells attach to a culture dish foci of actin appear prior to the cells flattening and spreading. We have observed that overexpression of a truncated ARFGAP1 that lacks catalytic activity for ARF, called GAP273, caused these foci to persist for much longer periods than non-transfected cells. This phenomenon was dependent on the level of GAP273 expression. Furthermore, cell spreading after re-plating or cell migration into a previously scraped area was inhibited in cells transfected with GAP273. Live cell imaging of such cells revealed that actin-rich membrane blebs formed that seldom made protrusions of actin spikes or membrane ruffles, suggesting that GAP273 interfered with the regulation of actin dynamics during cell spreading. The over-expression of constitutively active alleles of ARF6 and Rac1 suppressed the effect of GAP273 on actin. In addition, the activation of Rac1 by serum, but not that of RhoA or ARF6, was inhibited in cells over-expressing GAP273, suggesting that Rac1 is a likely downstream effector of ARFGAP1. The carboxyl terminal 65 residues of ARFGAP1 were sufficient to produce the effects on actin and cell spreading in transfected cells and co-localized with cortical actin foci.ARFGAP1 functions as an inhibitor upstream of Rac1 in regulating actin cytoskeleton. In addition to its GAP catalytic domain and Golgi binding domain, it also has an actin regulation domain in the carboxyl-terminal portion of the protein

    A role for POR1, a Rac1-interacting protein, in ARF6-mediated cytoskeletal rearrangements.

    No full text
    The ARF6 GTPase, the least conserved member of the ADP ribosylation factor (ARF) family, associates with the plasma membrane and intracellular endosome vesicles. Mutants of ARF6 defective in GTP binding and hydrolysis have a marked effect on endocytic trafficking and the gross morphology of the peripheral membrane system. Here we report that expression of the GTPase-defective mutant of ARF6, ARF6(Q67L), remodels the actin cytoskeleton by inducing actin polymerization at the cell periphery. This cytoskeletal rearrangement was inhibited by co-expression of ARF6(Q67L) with deletion mutants of POR1, a Rac1-interacting protein involved in membrane ruffling, but not with the dominant-negative mutant of Rac1, Rac1(S17N). A synergistic effect between POR1 and ARF6 for the induction of actin polymerization was detected. Furthermore, we observed that ARF6 interacts directly with POR1 and that this interaction was GTP dependent. These findings indicate that ARF6 and Rac1 function on distinct signaling pathways to mediate cytoskeletal reorganization, and suggest a role for POR1 as an important regulatory element in orchestrating cytoskeletal rearrangements at the cell periphery induced by ARF6 and Rac1

    ADP-ribosylation factor 6 regulates tumor cell invasion through the activation of the MEK/ERK signaling pathway

    No full text
    Tumor cell invasion through the extracellular matrix is accompanied by the formation of invadopodia, which are actin-rich protrusions at the adherent surface of cells at sites of extracellular matrix degradation. Using the invasive human melanoma cell line LOX as a model system, we demonstrate that the ADP-ribosylation factor 6 (ARF6) GTPase is an important regulator of invadopodia formation and cell invasion. We show that ARF6 localizes to invadopodia of LOX cells. Sustained activation of ARF6 significantly enhances the invasive capacity of melanoma as well as breast tumor cell lines, whereas dominant negative ARF6 abolishes basal cell invasive capacity as well as invasion induced by growth factors. Furthermore, using biochemical assays, we show that enhanced invasive capacity is accompanied by the activation of endogenous ARF6. Finally, we provide evidence that ARF6-enhanced melanoma cell invasion depends on the activation of the extracellular signal-regulated kinase (ERK), and that the ARF6 GTPase cycle regulates ERK activation. This study describes a vital role for ARF6 in melanoma cell invasion and documents a link between ARF6-mediated signaling and ERK activation

    Endogenous ARF6 Interacts with Rac1 upon Angiotensin II Stimulation to Regulate Membrane Ruffling and Cell Migration

    No full text
    ARF6 and Rac1 are small GTPases known to regulate remodelling of the actin cytoskeleton. Here, we demonstrate that these monomeric G proteins are sequentially activated when HEK 293 cells expressing the angiotensin type 1 receptor (AT(1)R) are stimulated with angiotensin II (Ang II). After receptor activation, ARF6 and Rac1 transiently form a complex. Their association is, at least in part, direct and dependent on the nature of the nucleotide bound to both small G proteins. ARF6-GTP preferentially interacts with Rac1-GDP. AT(1)R expressing HEK293 cells ruffle, form membrane protrusions, and migrate in response to agonist treatment. ARF6, but not ARF1, depletion using small interfering RNAs recapitulates the ruffling and migratory phenotype observed after Ang II treatment. These results suggest that ARF6 depletion or Ang II treatment are functionally equivalent and point to a role for endogenous ARF6 as an inhibitor of Rac1 activity. Taken together, our findings reveal a novel function of endogenously expressed ARF6 and demonstrate that by interacting with Rac1, this small GTPase is a central regulator of the signaling pathways leading to actin remodeling
    corecore