192 research outputs found

    Sum-of-Squares approach to feedback control of laminar wake flows

    Get PDF
    A novel nonlinear feedback control design methodology for incompressible fluid flows aiming at the optimisation of long-time averages of flow quantities is presented. It applies to reduced-order finite-dimensional models of fluid flows, expressed as a set of first-order nonlinear ordinary differential equations with the right-hand side being a polynomial function in the state variables and in the controls. The key idea, first discussed in Chernyshenko et al. 2014, Philos. T. Roy. Soc. 372(2020), is that the difficulties of treating and optimising long-time averages of a cost are relaxed by using the upper/lower bounds of such averages as the objective function. In this setting, control design reduces to finding a feedback controller that optimises the bound, subject to a polynomial inequality constraint involving the cost function, the nonlinear system, the controller itself and a tunable polynomial function. A numerically tractable approach to the solution of such optimisation problems, based on Sum-of-Squares techniques and semidefinite programming, is proposed. To showcase the methodology, the mitigation of the fluctuation kinetic energy in the unsteady wake behind a circular cylinder in the laminar regime at Re=100, via controlled angular motions of the surface, is numerically investigated. A compact reduced-order model that resolves the long-term behaviour of the fluid flow and the effects of actuation, is derived using Proper Orthogonal Decomposition and Galerkin projection. In a full-information setting, feedback controllers are then designed to reduce the long-time average of the kinetic energy associated with the limit cycle. These controllers are then implemented in direct numerical simulations of the actuated flow. Control performance, energy efficiency, and physical control mechanisms identified are analysed. Key elements, implications and future work are discussed

    PGI5: HEALTH CARE COST SAVINGS WITH BUDESONIDE CONTROLLED ILEAL RELEASE CAPSULES (CIR) IN CROHN'S DISEASE

    Get PDF

    Entanglement verification for quantum key distribution systems with an underlying bipartite qubit-mode structure

    Full text link
    We consider entanglement detection for quantum key distribution systems that use two signal states and continuous variable measurements. This problem can be formulated as a separability problem in a qubit-mode system. To verify entanglement, we introduce an object that combines the covariance matrix of the mode with the density matrix of the qubit. We derive necessary separability criteria for this scenario. These criteria can be readily evaluated using semidefinite programming and we apply them to the specific quantum key distribution protocol.Comment: 6 pages, 2 figures, v2: final versio

    A reduced complexity numerical method for optimal gate synthesis

    Full text link
    Although quantum computers have the potential to efficiently solve certain problems considered difficult by known classical approaches, the design of a quantum circuit remains computationally difficult. It is known that the optimal gate design problem is equivalent to the solution of an associated optimal control problem, the solution to which is also computationally intensive. Hence, in this article, we introduce the application of a class of numerical methods (termed the max-plus curse of dimensionality free techniques) that determine the optimal control thereby synthesizing the desired unitary gate. The application of this technique to quantum systems has a growth in complexity that depends on the cardinality of the control set approximation rather than the much larger growth with respect to spatial dimensions in approaches based on gridding of the space, used in previous literature. This technique is demonstrated by obtaining an approximate solution for the gate synthesis on SU(4)SU(4)- a problem that is computationally intractable by grid based approaches.Comment: 8 pages, 4 figure

    Chaotic Observer-based Synchronization Under Information Constraints

    Full text link
    Limit possibilities of observer-based synchronization systems under information constraints (limited information capacity of the coupling channel) are evaluated. We give theoretical analysis for multi-dimensional drive-response systems represented in the Lurie form (linear part plus nonlinearity depending only on measurable outputs). It is shown that the upper bound of the limit synchronization error (LSE) is proportional to the upper bound of the transmission error. As a consequence, the upper and lower bounds of LSE are proportional to the maximum rate of the coupling signal and inversely proportional to the information transmission rate (channel capacity). Optimality of the binary coding for coders with one-step memory is established. The results are applied to synchronization of two chaotic Chua systems coupled via a channel with limited capacity.Comment: 7 pages, 6 figures, 27 reference

    One-way quantum key distribution: Simple upper bound on the secret key rate

    Full text link
    We present a simple method to obtain an upper bound on the achievable secret key rate in quantum key distribution (QKD) protocols that use only unidirectional classical communication during the public-discussion phase. This method is based on a necessary precondition for one-way secret key distillation; the legitimate users need to prove that there exists no quantum state having a symmetric extension that is compatible with the available measurements results. The main advantage of the obtained upper bound is that it can be formulated as a semidefinite program, which can be efficiently solved. We illustrate our results by analysing two well-known qubit-based QKD protocols: the four-state protocol and the six-state protocol. Recent results by Renner et al., Phys. Rev. A 72, 012332 (2005), also show that the given precondition is only necessary but not sufficient for unidirectional secret key distillation.Comment: 11 pages, 1 figur

    Optimal entanglement witnesses for continuous-variable systems

    Full text link
    This paper is concerned with all tests for continuous-variable entanglement that arise from linear combinations of second moments or variances of canonical coordinates, as they are commonly used in experiments to detect entanglement. All such tests for bi-partite and multi-partite entanglement correspond to hyperplanes in the set of second moments. It is shown that all optimal tests, those that are most robust against imperfections with respect to some figure of merit for a given state, can be constructed from solutions to semi-definite optimization problems. Moreover, we show that for each such test, referred to as entanglement witness based on second moments, there is a one-to-one correspondence between the witness and a stronger product criterion, which amounts to a non-linear witness, based on the same measurements. This generalizes the known product criteria. The presented tests are all applicable also to non-Gaussian states. To provide a service to the community, we present the documentation of two numerical routines, FULLYWIT and MULTIWIT, which have been made publicly available.Comment: 14 pages LaTeX, 1 figure, presentation improved, references update

    Truncated su(2) moment problem for spin and polarization states

    Full text link
    We address the problem whether a given set of expectation values is compatible with the first and second moments of the generic spin operators of a system with total spin j. Those operators appear as the Stokes operator in quantum optics, as well as the total angular momentum operators in the atomic ensemble literature. We link this problem to a particular extension problem for bipartite qubit states; this problem is closely related to the symmetric extension problem that has recently drawn much attention in different contexts of the quantum information literature. We are able to provide operational, approximate solutions for every large spin numbers, and in fact the solution becomes exact in the limiting case of infinite spin numbers. Solutions for low spin numbers are formulated in terms of a hyperplane characterization, similar to entanglement witnesses, that can be efficiently solved with semidefinite programming.Comment: 18 pages, 1 figur

    Algorithm Engineering in Robust Optimization

    Full text link
    Robust optimization is a young and emerging field of research having received a considerable increase of interest over the last decade. In this paper, we argue that the the algorithm engineering methodology fits very well to the field of robust optimization and yields a rewarding new perspective on both the current state of research and open research directions. To this end we go through the algorithm engineering cycle of design and analysis of concepts, development and implementation of algorithms, and theoretical and experimental evaluation. We show that many ideas of algorithm engineering have already been applied in publications on robust optimization. Most work on robust optimization is devoted to analysis of the concepts and the development of algorithms, some papers deal with the evaluation of a particular concept in case studies, and work on comparison of concepts just starts. What is still a drawback in many papers on robustness is the missing link to include the results of the experiments again in the design
    corecore