65 research outputs found

    Laser-induced hierarchical carbon patterns on polyimide substrates for flexible urea sensors

    Get PDF
    Thermochemical decomposition of organic materials under heat-treatment in the absence of oxygen, known as the pyrolysis process, is often employed to convert micro and nano patterned polymers into carbon structures, which are subsequently used as device components. Pyrolysis is performed at ≄900 °C, which entails substrate materials with a high thermal stability that excludes flexible, polymeric substrates. We use optimized laser radiation to pattern graphitic carbon structures onto commercially available polyimide (Kapton) sheets in the micrometer to millimeter scale by inducing a localized, rapid pyrolysis, for the fabrication of flexible devices. Resulting laser carbon films are electrically conductive and exhibit a high-surface area with a hierarchical porosity distribution along their cross-section. The material is obtained using various combinations of laser parameters and pyrolysis environment (oxygen-containing and inert). Extensive characterization of laser carbon is performed to understand the correlation between the material properties and laser parameters, primarily fluence and power. A photothermal carbonization mechanism based on the plume formation is proposed. Further, laser carbon is used for the fabrication of enzymatic, pH-based urea sensors using two approaches: (i) direct urease enzyme immobilization onto carbon and (ii) electrodeposition of an intermediate chitosan layer prior to urease immobilization. This flexible sensor is tested for quantitative urea detection down to 10−4 M concentrations, while a qualitative, color-indicative test is performed on a folded sensor placed inside a tube to demonstrate its compatibility with catheters. Laser carbon is suitable for a variety of other flexible electronics and sensors, can be conveniently integrated with an external circuitry, heating elements, and with other microfabrication techniques such as fluidic platforms

    Ecological risk assessment of endocrine disruptors.

    Get PDF
    The European Centre for Ecotoxicology and Toxicology of Chemicals proposes a tiered approach for the ecological risk assessment of endocrine disruptors, integrating exposure and hazard (effects) characterization. Exposure assessment for endocrine disruptors should direct specific tests for wildlife species, placing hazard data into a risk assessment context. Supplementing the suite of mammalian screens now under Organization for Economic Cooperation and Development (OECD) validation, high priority should be given to developing a fish screening assay for detecting endocrine activity in oviparous species. Taking into account both exposure characterization and alerts from endocrine screening, higher tier tests are also a priority for defining adverse effects. We propose that in vivo mammalian and fish assays provide a comprehensive screening battery for diverse hormonal functions (including androgen, estrogen, and thyroid hormone), whereas Amphibia should be considered at higher tiers if there are exposure concerns. Higher tier endocrine-disruptor testing should include fish development and fish reproduction tests, whereas a full life-cycle test could be subsequently used to refine aquatic risk assessments when necessary. For avian risk assessment, the new OECD Japanese quail reproduction test guideline provides a valuable basis for developing a test to detecting endocrine-mediated reproductive effects; this species could be used, where necessary, for an avian life-cycle test. For aquatic and terrestrial invertebrates, data from existing developmental and reproductive tests remain of high value for ecological risk assessment. High priority should be given to research into comparative endocrine physiology of invertebrates to support data extrapolation to this diverse fauna

    Energy Density of Vortices in the Schroedinger Picture

    Get PDF
    The one-loop energy density of an infinitely thin static magnetic vortex in SU(2) Yang-Mills theory is evaluated using the Schroedinger picture. Both the gluonic fluctuations as well as the quarks in the vortex background are included. The energy density of the magnetic vortex is discussed as a function of the magnetic flux. The center vortices correspond to local minima in the effective potential. These minima are degenerated with the perturbative vacuum if the fermions are ignored. Inclusion of fermions lifts this degeneracy, raising the vortex energy above the energy of the perturbative vacuum.Comment: 25 pages, 2 figure

    The read-across hypothesis and environmental risk assessment of pharmaceuticals

    Get PDF
    This article is made available through the Brunel Open Access Publishing Fund. Copyright © 2013 American Chemical Society.Pharmaceuticals in the environment have received increased attention over the past decade, as they are ubiquitous in rivers and waterways. Concentrations are in sub-ng to low Όg/L, well below acute toxic levels, but there are uncertainties regarding the effects of chronic exposures and there is a need to prioritise which pharmaceuticals may be of concern. The read-across hypothesis stipulates that a drug will have an effect in non-target organisms only if the molecular targets such as receptors and enzymes have been conserved, resulting in a (specific) pharmacological effect only if plasma concentrations are similar to human therapeutic concentrations. If this holds true for different classes of pharmaceuticals, it should be possible to predict the potential environmental impact from information obtained during the drug development process. This paper critically reviews the evidence for read-across, and finds that few studies include plasma concentrations and mode of action based effects. Thus, despite a large number of apparently relevant papers and a general acceptance of the hypothesis, there is an absence of documented evidence. There is a need for large-scale studies to generate robust data for testing the read-across hypothesis and developing predictive models, the only feasible approach to protecting the environment.BBSRC Industrial Partnership Award BB/ I00646X/1 and BBSRC Industrial CASE Partnership Studentship BB/I53257X/1 with AstraZeneca Safety Health and Environment Research Programme

    Streamwise-travelling viscous waves in channel flows

    Get PDF
    The unsteady viscous flow induced by streamwise-travelling waves of spanwise wall velocity in an incompressible laminar channel flow is investigated. Wall waves belonging to this category have found important practical applications, such as microfluidic flow manipulation via electro-osmosis and surface acoustic forcing and reduction of wall friction in turbulent wall-bounded flows. An analytical solution composed of the classical streamwise Poiseuille flow and a spanwise velocity profile described by the parabolic cylinder function is found. The solution depends on the bulk Reynolds number R, the scaled streamwise wavelength (Formula presented.), and the scaled wave phase speed U. Numerical solutions are discussed for various combinations of these parameters. The flow is studied by the boundary-layer theory, thereby revealing the dominant physical balances and quantifying the thickness of the near-wall spanwise flow. The Wentzel–Kramers–Brillouin–Jeffreys (WKBJ) theory is also employed to obtain an analytical solution, which is valid across the whole channel. For positive wave speeds which are smaller than or equal to the maximum streamwise velocity, a turning-point behaviour emerges through the WKBJ analysis. Between the wall and the turning point, the wall-normal viscous effects are balanced solely by the convection driven by the wall forcing, while between the turning point and the centreline, the Poiseuille convection balances the wall-normal diffusion. At the turning point, the Poiseuille convection and the convection from the wall forcing cancel each other out, which leads to a constant viscous stress and to the break down of the WKBJ solution. This flow regime is analysed through a WKBJ composite expansion and the Langer method. The Langer solution is simpler and more accurate than the WKBJ composite solution, while the latter quantifies the thickness of the turning-point region. We also discuss how these waves can be generated via surface acoustic forcing and electro-osmosis and propose their use as microfluidic flow mixing devices. For the electro-osmosis case, the Helmholtz–Smoluchowski velocity at the edge of the Debye–HĂŒckel layer, which drives the bulk electrically neutral flow, is obtained by matched asymptotic expansion

    Environmental risk assessment of pharmaceutical drug substances - conceptual considerations

    No full text
    Drugs, i.e. active ingredients of human medicinal products, may be introduced into the environment after use in patients by sewage effluent pathways and consequently are detected at low concentrations in sewage effluents and in surface waters. Legal requirements in a number of geographical regions (Europe, US, and intended in Canada) demand environmental risk assessments (ERA) for new drug substances. Existing regulatory concepts of ERA are based initially on a set of short-term ecotoxicological studies in three to four different species, environmental behavior and the application of assessment factors to correct for the ERA inherent uncertainty. Based on theoretical considerations and the experience with a very limited, but well investigated, number of examples while considering that drugs are highly biologically active compounds, the appropriateness of this risk assessment procedure for all drug substances might be questioned. Indeed, e.g. long-term effects may occur at much lower concentrations and follow different toxicodynamic mechanism than extrapolated from short-term studies., In such cases, the application of assessment factors for deriving chronic no-observed effect concentration (NOECs) appears to be problematic. Although long-term tests with a variety of organisms would provide a complete database for the evaluation of the environmental risks, this is unachievable for all drugs due to time, money and animal welfare constraints. In order to avoid unnecessary testing, a concept is presented, which makes use of pharmacological and toxicological, as well as pharmaco- and toxicokinetic information derived from mammals during drug substance development. Useful data for adoption in a case-by-case testing strategy can be obtained by evaluating (a) the pharmacological activity, which indicates specific targets in mammalian species and may allow for an analysis, whether a similar target is available in aquatic species; (b) the mammalian toxicity, which may indicate, which targets are most susceptible to adverse effects; (c) the difference between acute and chronic effects in mammals, since the magnitude of this difference may indicate, whether long-term effects are expected at significantly lower levels than acute effects; (d) the (pharmacologically and toxicologically) effective plasma levels in mammalian test organisms, which may be compared with the relevant exposure scenario for the environment. Additionally, activity classes of compounds may be established based on experience with specific substances, in order to develop an appropriate test strategy. The above preliminary considerations should support decisions on the selection of candidate substances for chronic effects studies and for the appropriate selection of test species and endpoints to monitor. Generally, ecologically relevant endpoints such as impairment of growth, development and reproduction should be used to assess the ecotoxicologic effects

    Morphological sex reversal upon short-term exposure to endocrine modulators in juvenile fathead minnow (Pimephales promelas)

    No full text
    Indications of effects on fish endocrine system have been noted when exposed to effluents of sewage treatment plants and subsequently in the receiving surface waters. For screening purposes, the concentration of vitellogenin (VTG) in plasma is employed to detect potential exposure of fish, to (anti-)estrogenic substances. However, little is known about the variability of VTG determinations and morphological endpoints (secondary sexual characteristics) in fish under exposure conditions employing compounds with hormonal activity other than estrogens. An in vivo test system was established to study the effects of methyltestosterone (MT, a potential model androgen) and fadrozole (F, an aromatase inhibitor) as well as the combination of MT and F on juvenile, sexually undifferentiated fathead minnows (Pimephales promelas). Fish were exposed to those compounds continuously in the (nominal) ÎŒg/l range (MT, 10, 50 and 100 ÎŒg/l; F, 25, 50, 100 ÎŒg/l; MT+F, 10 ÎŒg MT per l +50 ÎŒg F per l), for 14 days (MT+F) or 21 days (MT and F) using a flow-through system. The concentration of VTG and the expression of VTG mRNA was determined using whole body homogenates in an enzyme linked immunosorbant assay (ELISA) or reverse transcription-polymerase chain reaction (RT-PCR), respectively. Exposure to MT alone led to de novo mRNA expression as well as up to a four-fold increase of VTG. F had no effect on the VTG mRNA expression and VTG protein synthesis. The combination of MT and F had no effect on VTG concentrations, however, this produced a strong masculinisation of the juvenile fish, e.g. after 13 days of exposure 100% of the fish showed typical male sex characteristics, e.g. formation of nose tubercles and pigmentation of the dorsal fin. The above findings suggest that in fish MT may be aromatised to an estrogen. F, on the other hand, inhibits testosterone aromatisation. Consequently, the combination of MT and F strongly morphologically masculinised the juvenile fathead minnows. VTG detection at the mRNA and protein level is a sensitive parameter, however, it does not provide for any information regarding the baseline estrogenicity of a given parent compound

    Derivation of an aquatic predicted no-effect concentration for the synthetic hormone, 17a-ethinyl estradiol

    No full text
    17a-Ethinyl estradiol (EE2) is a synthetic estrogen widely used in combination with othersteroid hormones in oral contraceptives and in the contraceptive patch. EE2 has been detected in sewage treatment plant effluents in the low nanogram -per-liter range and occasionally in surface waters in the U.S., U.K., Canada, Brazil, Germany, and elsewhere. The mode of action is receptor-mediated, and estrogen receptors exist in mammals and other vertebrates. A large number of studies on the effects of EE2 on aquatic organisms exist. One hundred English language studies published between 1994 and 2007, one as yet unpublished study, and findings published in conference proceedings (in German) were compared to published data quality criteria to identify the most relevant studies for deriving a predicted no-effect concentration (PNEC). Reproduction in fish was identified as the most sensitive end point in aquatic species. A species sensitivity distribution was constructed using no observed effect concentrations (NOECs) for reproductive effects from 39 papers in 26 species, resulting in a median hazardous concentration at which 5% of the species tested are affected (HC5,50) of 0.35 ng/L. After comparing this HC5,50 to all of the laboratory and field-derived toxicity information available for EE2, we recommend using 0.35 ng/L as the PNEC for EE2 in surface water. This PNEC is below 95% of the existing NOECs for effects on reproduction and is also below virtually all of the NOECs for vitellogenin induction in the key fish reproduction studies
    • 

    corecore