3 research outputs found

    Analysis of new high-precision transit light curves of WASP-10 b: starspot occultations, small planetary radius, and high metallicity

    Full text link
    The WASP-10 planetary system is intriguing because different values of radius have been reported for its transiting exoplanet. The host star exhibits activity in terms of photometric variability, which is caused by the rotational modulation of the spots. Moreover, a periodic modulation has been discovered in transit timing of WASP-10 b, which could be a sign of an additional body perturbing the orbital motion of the transiting planet. We attempt to refine the physical parameters of the system, in particular the planetary radius, which is crucial for studying the internal structure of the transiting planet. We also determine new mid-transit times to confirm or refute observed anomalies in transit timing. We acquired high-precision light curves for four transits of WASP-10 b in 2010. Assuming various limb-darkening laws, we generated best-fit models and redetermined parameters of the system. The prayer-bead method and Monte Carlo simulations were used to derive error estimates. Three transit light curves exhibit signatures of the occultations of dark spots by the planet during its passage across the stellar disk. The influence of stellar activity on transit depth is taken into account while determining system parameters. The radius of WASP-10 b is found to be no greater than 1.03 Jupiter radii, a value significantly smaller than most previous studies indicate. We calculate interior structure models of the planet, assuming a two-layer structure with one homogeneous envelope atop a rock core. The high value of the WASP-10 b's mean density allows one to consider the planet's internal structure including 270 to 450 Earth masses of heavy elements. Our new mid-transit times confirm that transit timing cannot be explained by a constant period if all literature data points are considered. They are consistent with the ephemeris assuming a periodic variation of transit timing...Comment: Accepted for publication in A&

    Transit timing variation and activity in the WASP-10 planetary system

    Full text link
    Transit timing analysis may be an effective method of discovering additional bodies in extrasolar systems which harbour transiting exoplanets. The deviations from the Keplerian motion, caused by mutual gravitational interactions between planets, are expected to generate transit timing variations of transiting exoplanets. In 2009 we collected 9 light curves of 8 transits of the exoplanet WASP-10b. Combining these data with published ones, we found that transit timing cannot be explained by a constant period but by a periodic variation. Simplified three-body models which reproduce the observed variations of timing residuals were identified by numerical simulations. We found that the configuration with an additional planet of mass of \sim0.1 MJM_{\rm{J}} and orbital period of \sim5.23 d, located close to the outer 5:3 mean motion resonance, is the most likely scenario. If the second planet is a transiter, the estimated flux drop will be \sim0.3 per cent and can be observable with a ground-based telescope. Moreover, we present evidence that the spots on the stellar surface and rotation of the star affect the radial velocity curve giving rise to spurious eccentricity of the orbit of the first planet. We argue that the orbit of WASP-10b is essentially circular. Using the gyrochronology method, the host star was found to be 270±80270 \pm 80 Myr old. This young age can explain the large radius reported for WASP-10b.Comment: MNRAS accepte

    Acyclic nucleoside phosphonates: a key class of antiviral drugs

    No full text
    corecore