3,520 research outputs found

    Attitude estimation of earth orbiting satellites by decomposed linear recursive filters

    Get PDF
    Attitude estimation of earth orbiting satellites (including Large Space Telescope) subjected to environmental disturbances and noises was investigated. Modern control and estimation theory is used as a tool to design an efficient estimator for attitude estimation. Decomposed linear recursive filters for both continuous-time systems and discrete-time systems are derived. By using this accurate estimation of the attitude of spacecrafts, state variable feedback controller may be designed to achieve (or satisfy) high requirements of system performance

    Anomalous enhancement of a penguin hadronic matrix element in B->K eta'

    Get PDF
    We estimate the density matrix element for the pi^0, eta and eta' production from the vacuum in the large-N_c limit. As a consequence, we find that the QCD axial anomaly leads to highly non-trivial corrections to the usual flavour SU(3) relations between B^0-> K^0 pi^0, B^0-> K^0 eta and B^0-> K^0 eta' decay amplitudes. These corrections may explain why the B-> K eta' branching ratio is about six times larger than the B-> K pi one.Comment: 5 pages, 1 figur

    The Green-function transform and wave propagation

    Get PDF
    Fourier methods well known in signal processing are applied to three-dimensional wave propagation problems. The Fourier transform of the Green function, when written explicitly in terms of a real-valued spatial frequency, consists of homogeneous and inhomogeneous components. Both parts are necessary to result in a pure out-going wave that satisfies causality. The homogeneous component consists only of propagating waves, but the inhomogeneous component contains both evanescent and propagating terms. Thus we make a distinction between inhomogenous waves and evanescent waves. The evanescent component is completely contained in the region of the inhomogeneous component outside the k-space sphere. Further, propagating waves in the Weyl expansion contain both homogeneous and inhomogeneous components. The connection between the Whittaker and Weyl expansions is discussed. A list of relevant spherically symmetric Fourier transforms is given

    AAA gunnermodel based on observer theory

    Get PDF
    The Luenberger observer theory is used to develop a predictive model of a gunner's tracking response in antiaircraft artillery systems. This model is composed of an observer, a feedback controller and a remnant element. An important feature of the model is that the structure is simple, hence a computer simulation requires only a short execution time. A parameter identification program based on the least squares curve fitting method and the Gauss Newton gradient algorithm is developed to determine the parameter values of the gunner model. Thus, a systematic procedure exists for identifying model parameters for a given antiaircraft tracking task. Model predictions of tracking errors are compared with human tracking data obtained from manned simulation experiments. Model predictions are in excellent agreement with the empirical data for several flyby and maneuvering target trajectories

    Computer simulation results of attitude estimation of earth orbiting satellites

    Get PDF
    Computer simulation results of attitude estimation of Earth-orbiting satellites (including Space Telescope) subjected to environmental disturbances and noises are presented. Decomposed linear recursive filter and Kalman filter were used as estimation tools. Six programs were developed for this simulation, and all were written in the basic language and were run on HP 9830A and HP 9866A computers. Simulation results show that a decomposed linear recursive filter is accurate in estimation and fast in response time. Furthermore, for higher order systems, this filter has computational advantages (i.e., less integration errors and roundoff errors) over a Kalman filter

    Network-analysis-guided synthesis of weisaconitine D and liljestrandinine.

    Get PDF
    General strategies for the chemical synthesis of organic compounds, especially of architecturally complex natural products, are not easily identified. Here we present a method to establish a strategy for such syntheses, which uses network analysis. This approach has led to the identification of a versatile synthetic intermediate that facilitated syntheses of the diterpenoid alkaloids weisaconitine D and liljestrandinine, and the core of gomandonine. We also developed a web-based graphing program that allows network analysis to be easily performed on molecules with complex frameworks. The diterpenoid alkaloids comprise some of the most architecturally complex and functional-group-dense secondary metabolites isolated. Consequently, they present a substantial challenge for chemical synthesis. The synthesis approach described here is a notable departure from other single-target-focused strategies adopted for the syntheses of related structures. Specifically, it affords not only the targeted natural products, but also intermediates and derivatives in the three families of diterpenoid alkaloids (C-18, C-19 and C-20), and so provides a unified synthetic strategy for these natural products. This work validates the utility of network analysis as a starting point for identifying strategies for the syntheses of architecturally complex secondary metabolites

    Anomalous Spin Dynamics of Hubbard Model on Honeycomb Lattices

    Full text link
    In this paper, the honeycomb Hubbard model in optical lattices is investigated using O(3) non-linear sigma model. A possible quantum non-magnetic insulator in a narrow parameter region is found near the metal-insulator transition. We study the corresponding dynamics of magnetic properties, and find that the narrow region could be widened by hole doping.Comment: 9 pages, 12 figure
    • …
    corecore