12 research outputs found

    Improving the repeatability of heterochromatic flicker photometry for measurement of macular pigment optical density

    Get PDF
    Background: Heterochromatic flicker photometry (HFP) is a psychophysical technique used to measure macular pigment optical density (MPOD). We used the MPS 9000 (MPS) HFP device. Our aim was to determine if the repeatability of the MPS could be improved to make it more suitable for monitoring MPOD over time. Methods: Intra-session repeatability was assessed in 25 participants (aged 20-50 years). The resulting data was explored in detail, e.g., by examining the effect of removal and adjustment of data with less than optimal quality parameters. A protocol was developed for improved overall reliability, which was then tested in terms of inter-session repeatability in a separate group of 27 participants (aged 19-52 years). Results: Removal and adjustment of data reduced the intra-session coefficient of repeatability (CR) by 0.04, on average, and the mean individual standard deviation by 0.004. Raw data observation offered further insight into ways of improving repeatability. The proposed protocol resulted in an inter-session CR of 0.08. Conclusions: Removal and adjustment of less than optimal data improved repeatability, and is therefore recommended. To further improve repeatability, in brief we propose that each patient perform each part of the test twice, and a third time where necessary (described in detail by the protocol). Doing so will make the MPS more useful in research and clinical settings. © 2012 Springer-Verlag

    The development of a multidisciplinary fall risk evaluation tool for demented nursing home patients in the Netherlands

    Get PDF
    BACKGROUND: Demented nursing home patients are at high risk for falls. Falls and associated injuries can have a considerable influence on the autonomy and quality of life of patients. The prevention of falls among demented patients is therefore an important issue. In order to intervene in an efficient way in this group of patients, it is important to systematically evaluate the fall risk profile of each individual patient so that for each patient tailor-made preventive measures can be taken. Therefore, the objective of the present study is to develop a feasible and evidence based multidisciplinary fall risk evaluation tool to be used for tailoring preventive interventions to the needs of individual demented patients. METHODS: To develop this multidisciplinary fall risk evaluation tool we have chosen to combine scientific evidence on the one hand and experts' opinions on the other hand. Firstly, relevant risk factors for falling in elderly persons were gathered from the literature. Secondly, a group of Dutch experts in the field of falls and fall prevention in the elderly were consulted to judge the suitability of these risk factors for use in a multidisciplinary fall risk evaluation tool for demented nursing home patients. Thirdly, in order to generate a compact list of the most relevant risk factors for falling in demented elderly, all risk factors had to fulfill a set of criteria indicating their relevance for this specific target population. Lastly the final list of risk factors resulting from the above mentioned procedure was presented to the expert group. The members were also asked to give their opinion about the practical use of the tool. RESULTS: The multidisciplinary fall risk evaluation tool we developed includes the following items: previous falls, use of medication, locomotor functions, and (correct) choice and use of assistive and protective devices. The tool is developed for the multidisciplinary teams of the nursing homes. CONCLUSION: This evidence and practice based multidisciplinary fall risk evaluation tool targets the preventive interventions aimed to prevent falls and their negative consequences in demented nursing home patients

    Building Smart Vision Blocks

    No full text
    Gepubliceerd in Mikroniek, nr. 6 2018 In manufacturing environments where collaborative robots are employed, conventional computer vision algorithms have trouble in the robust localisation and detection of products due to changing illumination conditions and shadows caused by a human sharing the workspace with the robotic system. In order to enhance the robustness of vision applications, machine learning with neural networks is explored. The performance of machine-learning algorithms versus conventional computer vision algorithms is studied by observing a generic user scenario for the manufacturing process: the assembly of a product by localisation, identification and manipulation of building blocks

    Optical phantoms of varying geometry based on thin building blocks with controlled optical properties

    Get PDF
    Current innovations in optical imaging, measurement techniques, and data analysis algorithms express the need for reliable testing and comparison methods. We present the design and characterization of silicone elastomer-based optical phantoms. Absorption is included by adding a green dye and scattering by adding TiO2 or SiO2 particles. Optical coherence tomography measurements demonstrate a linear dependence of the attenuation coefficient with scatterer concentration in the absence of absorbers. Optical transmission spectroscopy of the nonscattering absorbing phantoms shows a linear concentration dependent absorption coefficient. Both types of samples are stable over a period of 6 months. Confocal microscopy of the samples demonstrates a homogeneous distribution of the scatterers, albeit with some clustering. Based on layers with thicknesses as small as 50 mu m, we make multifaceted structures resembling flow channels, (wavy) skin-like structures, and a layered and curved phantom resembling the human retina. Finally, we demonstrate the ability to incorporate gold nanoparticles within the phantoms. In conclusion, our phantoms are easy to make, are based on affordable materials, exhibit well-defined and controllable thickness, refractive index, absorption, and scattering coefficients, are homogeneous, and allow the incorporation of novel types of nanoparticle contrast agents. We believe our phantoms fulfill many of the requirements for an "ideal" tissue phantom, and will be particularly suited for novel optical coherence tomography applications. (C) 2010 Society or Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3369003

    Macular pigment optical density measurements: evaluation of a device using heterochromatic flicker photometry

    No full text
    Purpose Accurate assessment of the amount of macular pigment (MPOD) is necessary to investigate the role of carotenoids and their assumed protective functions. High repeatability and reliability are important to monitor patients in studies investigating the influence of diet and supplements on MPOD. We evaluated the Macuscope (Macuvision Europe Ltd., Lapworth, Solihull, UK), a recently introduced device for measuring MPOD using the technique of heterochromatic flicker photometry (HFP). We determined agreement with another HFP device (QuantifEye; MPS 9000 series: Tinsley Precision Instruments Ltd., Croydon, Essex, UK) and a fundus reflectance method. Methods The right eyes of 23 healthy subjects (mean age 33.9 +/- 15.1 years) were measured. We determined agreement with QuantifEye and correlation with a fundus reflectance method. Repeatability of QuantifEye was assessed in 20 other healthy subjects (mean age 32.1 +/- 7.3 years). Repeatability was also compared with measurements by a fundus reflectance method in 10 subjects. Results We found low agreement between test and retest measurements with Macuscope. The average difference and the limits of agreement were -0.041 +/- 0.32. We found high agreement between test and retest measurements of QuantifEye (-0.02 +/- 0.18) and the fundus reflectance method (-0.04 +/- 0.18). MPOD data obtained by Macuscope and QuantifEye showed poor agreement: -0.017 +/- 0.44. For Macuscope and the fundus reflectance method, the correlation coefficient was r=0.05 (P=0.83). A significant correlation of r=0.87 (P <0.001) was found between QuantifEye and the fundus reflectance method. Conclusions Because repeatability of Macuscope measurements was low (ie, wide limits of agreement) and MPOD values correlated poorly with the fundus reflectance method, and agreed poorly with QuantifEye, the tested Macuscope protocol seems less suitable for studying MPOD. Eye (2011) 25, 105-112; doi: 10.1038/eye.2010.164; published online 5 November 201
    corecore