974 research outputs found

    On CJC_J and CTC_T in the Gross-Neveu and O(N)O(N) Models

    Full text link
    We apply large NN diagrammatic techniques for theories with double-trace interactions to the leading corrections to CJC_J, the coefficient of a conserved current two-point function, and CTC_T, the coefficient of the stress-energy tensor two-point function. We study in detail two famous conformal field theories in continuous dimensions, the scalar O(N)O(N) model and the Gross-Neveu model. For the O(N)O(N) model, where the answers for the leading large NN corrections to CJC_J and CTC_T were derived long ago using analytic bootstrap, we show that the diagrammatic approach reproduces them correctly. We also carry out a new perturbative test of these results using the O(N)O(N) symmetric cubic scalar theory in 6−ϵ6-\epsilon dimensions. We go on to apply the diagrammatic method to the Gross-Neveu model, finding explicit formulae for the leading corrections to CJC_J and CTC_T as a function of dimension. We check these large NN results using regular perturbation theory for the Gross-Neveu model in 2+ϵ2+\epsilon dimensions and the Gross-Neveu-Yukawa model in 4−ϵ4-\epsilon dimensions. For small values of NN, we use Pade approximants based on the 4−ϵ4-\epsilon and 2+ϵ2+\epsilon expansions to estimate the values of CJC_J and CTC_T in d=3d=3. For the O(N)O(N) model our estimates are close to those found using the conformal bootstrap. For the GN model, our estimates suggest that, even when NN is small, CTC_T differs by no more than 2%2\% from that in the theory of free fermions. We find that the inequality CTUV>CTIRC_T^{\textrm{UV}} > C_T^{\textrm{IR}} applies both to the GN and the scalar O(N)O(N) models in d=3d=3.Comment: 62 pages, 34 figures. v2: minor improvements, references adde

    An investigation for the development of an integrated optical data preprocessor

    Get PDF
    A laboratory model of a 16 channel integrated optical data preprocessor was fabricated and tested in response to a need for a device to evaluate the outputs of a set of remote sensors. It does this by accepting the outputs of these sensors, in parallel, as the components of a multidimensional vector descriptive of the data and comparing this vector to one or more reference vectors which are used to classify the data set. The comparison is performed by taking the difference between the signal and reference vectors. The preprocessor is wholly integrated upon the surface of a LiNbO3 single crystal with the exceptions of the source and the detector. He-Ne laser light is coupled in and out of the waveguide by prism couplers. The integrated optical circuit consists of a titanium infused waveguide pattern, electrode structures and grating beam splitters. The waveguide and electrode patterns, by virtue of their complexity, make the vector subtraction device the most complex integrated optical structure fabricated to date

    Collaborative applications used in a wireless environment at sea for use in Coast Guard Law Enforcement and Homeland Security missions

    Get PDF
    This thesis analyzes the potential impact of incorporating wireless technologies, specifically an 802.11 mesh layer architecture and 802.16 Orthogonal Frequency Division Multiplexing, in order to effectively and more efficiently transmit data and create a symbiotic operational picture between Coast Guard Cutters, their boarding teams, Coast Guard Operation Centers, and various external agencies. Two distinct collaborative software programs, Groove Virtual Office and the Naval Postgraduate School's Situational Awareness Agent, are utilized over the Tactical Mesh and OFDM network configurations to improve the Common Operating Picture of involved units within a marine environment to evaluate their potential impact for the Coast Guard. This is being done to increase the effectiveness and efficiency of Coast Guard units while they carry out their Law Enforcement and Homeland Security Missions. Through multiple field experiments, including Tactical Network Topology and nuclear component sensing with Lawrence Livermore National Laboratory, we utilize commercial off the shelf (COTS) equipment and software to evaluate their impact on these missions.http://archive.org/details/collaborativeppl109452311Lieutenant Commander, United States Coast GuardLieutenant, United States Coast GuardApproved for public release; distribution is unlimited

    Modelling manufacturing deformations in corner sections made of composite materials

    Get PDF
    A three-step finite element model has been implemented to predict the spring-in of L-shaped parts. The material property development during the cure has been modelled as step changes during transitions between viscous, rubbery and glassy states of the resin. The tool-part interaction is modelled as a sliding interface with a constant sliding shear stress. The effect of various material and geometric variables on the deformation of L-Section parts are investigated by a parameter sensitivity analysis. The spring-in predictions obtained by the finite element method are compared to experimental measurements for unidirectional and cross-ply parts of various thicknesses and radii. Results indicate that although a 2D plane strain model can predict the spring-in measured at the symmetry plane fairly well, it is not sufficient to capture the complex deformation patterns observed. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav

    Structural/functional analysis of the human OXR1 protein: identification of exon 8 as the anti-oxidant encoding function

    Get PDF
    BACKGROUND: The human OXR1 gene belongs to a class of genes with conserved functions that protect cells from reactive oxygen species (ROS). The gene was found using a screen of a human cDNA library by its ability to suppress the spontaneous mutator phenotype of an E. coli mutH nth strain. The function of OXR1 is unknown. The human and yeast genes are induced by oxidative stress and targeted to the mitochondria; the yeast gene is required for resistance to hydrogen peroxide. Multiple spliced isoforms are expressed in a variety of human tissues, including brain. RESULTS: In this report, we use a papillation assay that measures spontaneous mutagenesis of an E. coli mutM mutY strain, a host defective for oxidative DNA repair. Papillation frequencies with this strain are dependent upon a G-\u3eT transversion in the lacZ gene (a mutation known to occur as a result of oxidative damage) and are suppressed by in vivo expression of human OXR1. N-terminal, C-terminal and internal deletions of the OXR1 gene were constructed and tested for suppression of the mutagenic phenotype of the mutM mutY strain. We find that the TLDc domain, encoded by the final four exons of the OXR1 gene, is not required for papillation suppression in E. coli. Instead, we show that the protein segment encoded by exon 8 of OXR1 is responsible for the suppression of oxidative damage in E. coli. CONCLUSION: The protein segment encoded by OXR1 exon 8 plays an important role in the anti-oxidative function of the human OXR1 protein. This result suggests that the TLDc domain, found in OXR1 exons 12-16 and common in many proteins with nuclear function, has an alternate (undefined) role other than oxidative repair

    Spin-spin correlators in Majorana representation

    Full text link
    In the Majorana representation of a spin 1/2 we find an identity which relates spin-spin correlators to one-particle fermionic correlators. This should be contrasted with the straightforward approach in which two-particle (four-fermion) correlators need to be calculated. We discuss applications to the analysis of the dynamics of a spin coupled to a dissipative environment and of a quantum detector performing a continuous measurement of a qubit's state

    Feasibility investigation of integrated optics Fourier transform devices

    Get PDF
    The possibility of producing an integrated optics data processing device based upon Fourier transformations or other parallel processing techniques, and the ways in which such techniques may be used to upgrade the performance of present and projected NASA systems were investigated. Activities toward this goal include; (1) production of near-diffraction-limited geodesic lenses in glass waveguides; (2) development of grinding and polishing techniques for the production of geodesic lenses in LiNbO3 waveguides; (3) development of a characterization technique for waveguide lenses; and (4) development of a theory for corrected aspheric geodesic lenses. A holographic subtraction system was devised which should be capable of rapid on-board preprocessing of a large number of parallel data channels. The principle involved is validated in three demonstrations

    An investigation for the development of an integrated optical data preprocessor

    Get PDF
    The successful fabrication and demonstration of an integrated optical circuit designed to perform a parallel processing operation by utilizing holographic subtraction to simultaneously compare N analog signal voltages with N predetermined reference voltages is summarized. The device alleviates transmission, storage and processing loads of satellite data systems by performing, at the sensor site, some preprocessing of data taken by remote sensors. Major accomplishments in the fabrication of integrated optics components include: (1) fabrication of the first LiNbO3 waveguide geodesic lens; (2) development of techniques for polishing TIR mirrors on LiNbO3 waveguides; (3) fabrication of high efficiency metal-over-photoresist gratings for waveguide beam splitters; (4) demonstration of high S/N holographic subtraction using waveguide holograms; and (5) development of alignment techniques for fabrication of integrated optics circuits. Important developments made in integrated optics are the discovery and suggested use of holographic self-subtraction in LiNbO3, development of a mathematical description of the operating modes of the preprocessor, and the development of theories for diffraction efficiency and beam quality of two dimensional beam defined gratings

    Use of High-Order Curved Elements for Direct and Large Eddy Simulation of Flow over Rough Surfaces

    Get PDF
    In the present study, the curved element capabilities of a high-order solver are scrutinized for use in scale-resolving simulations regarding roughness. The approach devised not only suggests a plausible way to adopt a body-fitted grid approach as an alternative to immersed boundary method (IBM), but also enables performing LES instead of DNS without under-resolving the roughness. The method is first tested using various polynomial degrees. Then, it is validated against reference DNS-IBM results from a rough channel flow setup having various Reynolds numbers corresponding to the entire roughness range. The results confirm the validity of the new approach. Finally, a highly loaded low-pressure turbine cascade is simulated under LES resolution with and without the roughness patch. Although a rougher surface is needed for producing a more pronounced impact on the flow, the viability of this method also for pressure-gradient boundary layers is proven
    • …
    corecore