380 research outputs found

    Operating injection lasers by fast square current pulses of variable amplitude

    Get PDF
    A simple solid state circuit was used to drive GaAs injection lasers by fast (∼100 nsec) square pulses of variable amplitude (0–25 A). The amplitudes of the current pulses and the corresponding emitted light pulses were measured by a dual peak detector circuit. Using these circuits we were able to plot automatically the current vs light curve and determine the threshold current of the laser diodes

    Fast, high current, high repetition rate pulse generator for injection lasers

    Get PDF
    The circuit described is capable of generating high‐current (2–50 A), fast‐rise‐time (10 nsec), square‐wave pulses into a 50‐Ω load. This circuit may be used for driving injection lasers at high repetition rates (up to 1.5 kHz) when connected to coaxial cables

    Computational Analysis and Efficient Algorithms for Micro and Macro OFDMA Scheduling

    Get PDF

    Telomeres in ICF syndrome cells are vulnerable to DNA damage due to elevated DNA:RNA hybrids.

    Get PDF
    DNA:RNA hybrids, nucleic acid structures with diverse physiological functions, can disrupt genome integrity when dysregulated. Human telomeres were shown to form hybrids with the lncRNA TERRA, yet the formation and distribution of these hybrids among telomeres, their regulation and their cellular effects remain elusive. Here we predict and confirm in several human cell types that DNA:RNA hybrids form at many subtelomeric and telomeric regions. We demonstrate that ICF syndrome cells, which exhibit short telomeres and elevated TERRA levels, are enriched for hybrids at telomeric regions throughout the cell cycle. Telomeric hybrids are associated with high levels of DNA damage at chromosome ends in ICF cells, which are significantly reduced with overexpression of RNase H1. Our findings suggest that abnormally high TERRA levels in ICF syndrome lead to accumulation of telomeric hybrids that, in turn, can result in telomeric dysfunction

    Magnetically Stabilized Luminescent Excitations in Hexagonal Boron Nitride

    Full text link
    Magnetically stabilized luminescence is observed in hexagonal boron nitride. The luminescence is induced by absorption of cold neutrons and is in the visible region. In the absence of a magnetic field, the photon emission level is observed to decay over several hundred seconds. A fraction of this luminescence can be suppressed if the temperature is T <~ 0.6 K and the magnetic field is B >~ 1.0 T. Subsequent to irradiation and suppression, luminescence can be induced by an increase in T or lowering of B. Possible explanations include stabilization of triplet states or the localization and stabilization of excitons.Comment: 11 pages, 7 figures, to appear in the Journal of Luminescenc

    Vision and Foraging in Cormorants: More like Herons than Hawks?

    Get PDF
    Background Great cormorants (Phalacrocorax carbo L.) show the highest known foraging yield for a marine predator and they are often perceived to be in conflict with human economic interests. They are generally regarded as visually-guided, pursuit-dive foragers, so it would be expected that cormorants have excellent vision much like aerial predators, such as hawks which detect and pursue prey from a distance. Indeed cormorant eyes appear to show some specific adaptations to the amphibious life style. They are reported to have a highly pliable lens and powerful intraocular muscles which are thought to accommodate for the loss of corneal refractive power that accompanies immersion and ensures a well focussed image on the retina. However, nothing is known of the visual performance of these birds and how this might influence their prey capture technique. Methodology/Principal Findings We measured the aquatic visual acuity of great cormorants under a range of viewing conditions (illuminance, target contrast, viewing distance) and found it to be unexpectedly poor. Cormorant visual acuity under a range of viewing conditions is in fact comparable to unaided humans under water, and very inferior to that of aerial predators. We present a prey detectability model based upon the known acuity of cormorants at different illuminances, target contrasts and viewing distances. This shows that cormorants are able to detect individual prey only at close range (less than 1 m). Conclusions/Significance We conclude that cormorants are not the aquatic equivalent of hawks. Their efficient hunting involves the use of specialised foraging techniques which employ brief short-distance pursuit and/or rapid neck extension to capture prey that is visually detected or flushed only at short range. This technique appears to be driven proximately by the cormorant's limited visual capacities, and is analogous to the foraging techniques employed by herons

    Gene expression in developing watermelon fruit

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cultivated watermelon form large fruits that are highly variable in size, shape, color, and content, yet have extremely narrow genetic diversity. Whereas a plethora of genes involved in cell wall metabolism, ethylene biosynthesis, fruit softening, and secondary metabolism during fruit development and ripening have been identified in other plant species, little is known of the genes involved in these processes in watermelon. A microarray and quantitative Real-Time PCR-based study was conducted in watermelon [<it>Citrullus lanatus </it>(Thunb.) Matsum. & Nakai var. lanatus] in order to elucidate the flow of events associated with fruit development and ripening in this species. RNA from three different maturation stages of watermelon fruits, as well as leaf, were collected from field grown plants during three consecutive years, and analyzed for gene expression using high-density photolithography microarrays and quantitative PCR.</p> <p>Results</p> <p>High-density photolithography arrays, composed of probes of 832 EST-unigenes from a subtracted, fruit development, cDNA library of watermelon were utilized to examine gene expression at three distinct time-points in watermelon fruit development. Analysis was performed with field-grown fruits over three consecutive growing seasons. Microarray analysis identified three hundred and thirty-five unique ESTs that are differentially regulated by at least two-fold in watermelon fruits during the early, ripening, or mature stage when compared to leaf. Of the 335 ESTs identified, 211 share significant homology with known gene products and 96 had no significant matches with any database accession. Of the modulated watermelon ESTs related to annotated genes, a significant number were found to be associated with or involved in the vascular system, carotenoid biosynthesis, transcriptional regulation, pathogen and stress response, and ethylene biosynthesis. Ethylene bioassays, performed with a closely related watermelon genotype with a similar phenotype, i.e. seeded, bright red flesh, dark green rind, etc., determined that ethylene levels were highest during the green fruit stage followed by a decrease during the white and pink fruit stages. Additionally, quantitative Real-Time PCR was used to validate modulation of 127 ESTs that were differentially expressed in developing and ripening fruits based on array analysis.</p> <p>Conclusion</p> <p>This study identified numerous ESTs with putative involvement in the watermelon fruit developmental and ripening process, in particular the involvement of the vascular system and ethylene. The production of ethylene during fruit development in watermelon gives further support to the role of ethylene in fruit development in non-climacteric fruits.</p

    From Nonspecific DNA–Protein Encounter Complexes to the Prediction of DNA–Protein Interactions

    Get PDF
    ©2009 Gao, Skolnick. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.doi:10.1371/journal.pcbi.1000341DNA–protein interactions are involved in many essential biological activities. Because there is no simple mapping code between DNA base pairs and protein amino acids, the prediction of DNA–protein interactions is a challenging problem. Here, we present a novel computational approach for predicting DNA-binding protein residues and DNA–protein interaction modes without knowing its specific DNA target sequence. Given the structure of a DNA-binding protein, the method first generates an ensemble of complex structures obtained by rigid-body docking with a nonspecific canonical B-DNA. Representative models are subsequently selected through clustering and ranking by their DNA–protein interfacial energy. Analysis of these encounter complex models suggests that the recognition sites for specific DNA binding are usually favorable interaction sites for the nonspecific DNA probe and that nonspecific DNA–protein interaction modes exhibit some similarity to specific DNA–protein binding modes. Although the method requires as input the knowledge that the protein binds DNA, in benchmark tests, it achieves better performance in identifying DNA-binding sites than three previously established methods, which are based on sophisticated machine-learning techniques. We further apply our method to protein structures predicted through modeling and demonstrate that our method performs satisfactorily on protein models whose root-mean-square Ca deviation from native is up to 5 Å from their native structures. This study provides valuable structural insights into how a specific DNA-binding protein interacts with a nonspecific DNA sequence. The similarity between the specific DNA–protein interaction mode and nonspecific interaction modes may reflect an important sampling step in search of its specific DNA targets by a DNA-binding protein
    corecore