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Abstract— OFDMA is one of the most important modulation
and access methods for the future mobile networks. Before
transmitting a frame on the downlink, an OFDMA base station
has to invoke an algorithm that determines which of the pending
packets will be transmitted, what modulation should be used
for each of them, and how to construct the complex OFDMA
frame matrix as a collection of rectangles that fit into a single
matrix with fixed dimensions. We propose efficient algorithms,
with performance guarantee, that solve this intricate OFDMA
scheduling problem by breaking it down into two sub-problems,
referred to as macro and micro scheduling. We analyze the
computational complexity of these sub-problems and develop
efficient algorithms for solving them.

I. INTRODUCTION

Orthogonal Frequency Division Multiple Access (OFDMA)
is one of the most important modulation and multiple access
methods for the future mobile networks. It is an extension
of OFDM, which is today the modulation of choice for non-
mobile wireless access systems such as IEEE 802.11 (WiFi)
and IEEE 802.16 (WiMax). OFDM divides a single frequency
band into dozens of sub-carriers for parallel transmissions by
the same user. This division increases the tolerance to noise
and multipath effects, while enabling more efficient use of
bandwidth allocation. OFDMA extends OFDM by dividing the
original band into many subchannels, each comprising a group
of orthogonal carriers. Various modulations and FEC (Forward
Error Correction) techniques are used for each subchannel, in
order to provide improved coverage and throughput.

Unlike OFDM, OFDMA has many intricate constraints on
its frame structure. The structure of an OFDMA downlink
frame is depicted in Figure 1. The frame can be viewed as a
2-dimensional matrix, with the y-axis indicating the number
of subchannels, each consisting of several orthogonal and not
necessarily adjacent frequencies, and the x-axis indicating the
time. The frame starts with a Frame Control Header (FCH),
which contains information about the code rate, modulation
level, and the length of the downlink (DL) and uplink (UL)
maps. The data messages (PDUs) are transmitted in multiple
bursts. There are 7 bursts shown in Figure 1. Each burst is
transmitted by the base station using a specific combination
of modulation technique, code rate, and error correcting codes.
Such a combination is referred to as PHY-profile. Due to
OFDMA-related constraints, each data burst must be allocated
a rectangular region within the frame. A burst may contain one
or more PDUs destined for one or more receivers. To ensure
correct decoding of the received signals, certain PHY-profile
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Fig. 1. The Structure of an OFDMA Downlink Frame

information about every burst is required. This information
is included as overhead in the DL burst map. The DL and
UL maps are transmitted using a pre-determined and robust
PHY-profile.

This paper studies combinational aspects of scheduling on
an 802.16/WiMax downlink OFDMA channel. Before trans-
mitting a downstream frame, typically once every few ms.,
the base station has to invoke a scheduling algorithm that
will generate the frame matrix as shown in Figure 1. To this
end, the scheduler needs to address the following decision
problems:

• To decide which PHY-profile will be used for each PDU.
There are several dozen potential profiles, each with
its own bandwidth requirement and robustness against
transmission errors. It is not possible to use all profiles
in one frame. Moreover, each profile introduces a fixed
significant overhead in the DL map field of the frame,
and therefore, because of throughput considerations, the
scheduler should try to minimize the number of profiles
accommodated in every frame.

• To determine which PDU will be transmitted in the
next frame. This decision has to take into account many
factors, such as: (a) Quality of Service, since some
of the PDUs have a guaranteed upper bound on their
maximum delay; (b) total throughput maximization, since
transmission to some of the hosts is difficult and requires
more bandwidth for reliable delivery, and (c) fairness.

• To decide where exactly in the frame every burst will
be located. Here there are also several constraints, some



Which PDUs will
be transmitted

Macro
Sched.

Extended
Macro
Sched.which PHY−profile

transmitted and in
Which PDUs will be

Sched.
Micro How to build the

matrix
How to build the

matrix
Micro
Sched.

A list of PDUs Input

A list of PDUs and

Input the association between
each PDU and its

selected PHY−profile

(a) the first approach (b) the second approach

Fig. 2. The two approaches studied in this paper

of which are: (a) power boosting, namely the ability
of the base station to increase the transmission power
used for some burst while decreasing the power used for
other bursts transmitted at the same time on different
subchannels; (b) efficiency, since the requirement that
every PHY-profile will be represented as a rectangle in
the frame matrix may leave some unused space in each
rectangle.

There are two kinds of difficulties associated with addressing
these problems. The first is that a solution for each problem
depends on the solutions for the other two. This leads to a
circular dependency that should be broken. The second diffi-
culty is that, as shown later, each of these decision problems is
NP-hard, which means that even if the circular dependency is
broken, finding an optimal scheduling algorithm is not possible
under standard assumptions.

In this paper we address the OFDMA scheduling problem
in two approaches. In the first approach (Section IV and
Section V) we assume that the base station determines in
advance the PHY-profile to be used for each PDU, and the
profit (utility) gained from transmitting this PDU using its
selected PHY-profile. Then, there are two phases. In the
first phase, referred to as macro scheduling, the base station
determines which of the PDUs will actually be selected
for transmission. In the second phase, referred to as micro
scheduling, the scheduler determines how to build the OFDMA
matrix from the selected PDUs. In the second approach we
extend the macro scheduler such that it also determines the
PHY-profile for each PDU. This is referred to as extended
macro scheduling. Figure 2 summarizes these two approaches.

The assignment of profit (utility) to PDUs, which is based
on various considerations such as QoS, throughput maximiza-
tion, fairness, and channel state information (CSI), is beyond
the scope of this paper. We address this issue in [5] in
the context of uplink transmission, and similar ideas can be
implemented on the downlink as well. In what follows we
give some examples for the profit assignment considerations
discussed in [5]. A delay-sensitive (VoIP) packet is assigned
a high profit when it is received by the scheduler. This
priority is reduced during the time the packet is delayed
before transmission. In contrast, data packets, which are not
so much sensitive to delay, are assigned a lower profit, and
their profit is only slightly affected by the time they wait for
transmission. A packet whose intended channel is known to be

good is assigned a higher profit than a similar packet whose
intended channel is not as good. A packet protected by an
ARQ (automatic repeat request) protocol is assigned a higher
profit than a non-protected packet when the two are supposed
to be transmitted over a bad channel.

The main contributions of this paper are:
• Breaking the OFDMA scheduling problem into two more

tractable problems, referred to as macro scheduling and
micro scheduling.

• Analyzing the computational complexity of the macro
and micro scheduling problems and providing algorithms
with the best performance guarantee for these problems.

• Developing efficient and practical algorithms for these
NP-hard scheduling problems. Specifically, we provide an
optimal macro scheduling problem, and an algorithm with
only 2.5% overhead for the micro scheduling problem.

• Introducing a new concept in which the transmission
profile of a PDU is not only determined by the channel
condition of the intended receiver, but on the entire
system conditions. To this end, we extend the macro
scheduling problem to include the selection of transmis-
sion parameters for each PDU, and provide an efficient al-
gorithm for this extended macro scheduling problem. This
algorithm has the best possible approximation guarantee
up to an arbitrary small constant. It provides a significant
improvement over the algorithm for the macro scheduling
problem, at the cost of higher running time.

The rest of this paper is organized as follows. In Section II
we discuss related work. In Section III we divide the OFDMA
scheduling problem into macro and micro scheduling sub-
problems, and discuss their computational complexity. In
Section IV we present efficient algorithms for the macro
scheduling sub-problem and in Section V we present such
algorithms for the micro scheduling sub-problem. Section VI
presents an extension to the macro scheduling problem, which
allows the base station to select a PHY-profile for every
PDU as a part of the scheduling process. This extension
is shown to significantly improve the performance of the
scheduler. Section VII presents an approach for achieving
global optimization using the previous algorithms. Section
VIII presents a simulation study and Section IX concludes
the paper.

II. RELATED WORK

While much work has been done on scheduling in wire-
less networks, only a few papers address resource allocation
in OFDMA channels. In [2], some variations of the micro
scheduling problem are addressed. In these variations, the
input consists of bursts and their sizes. The bursts have
priorities and the objective is to find an efficient allocation
with accordance to these priorities. The main differences
between [2] and our paper are that: (a) we analyze the
computational complexity of the micro scheduling problem
and propose also approximation algorithms while [2] presents
only heuristics; (b) we address not only the micro scheduling
problem but also the macro scheduling problem and the
combination between the micro scheduling problem and the
macro scheduling problem; and (c) we consider a more general
case, where profit is assigned to each PDU and not to each
burst (a collection of PDUs).

In [12], a variation of the micro scheduling problem is
addressed. In this variation, the bursts have a specific order
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in which they can be scheduled. That is, in order to schedule
burst i, all bursts 1 . . . i − 1 must also be scheduled. The
authors provide both theoretical hardness results, and an
approximation algorithm. The main differences between [12]
and our paper are that: (a) we address not only the micro
scheduling problem but also the macro scheduling problem
and the combination between the two; and (b) in our paper
the bursts are not scheduled based a predetermined order, but
according to the profit of their PDUs.

In [18], it is shown that when an earliest-deadline-first
greedy algorithm is implemented over good channels of a cen-
tralized wireless network, like the one we consider, the number
of packets lost due to deadline expiration is minimized. In [16],
the authors provide a fluid fair queueing scheduler for a noisy
channel. In [19], the authors present an efficient fair queuing
approximation of a noisy channel using deficit round robin,
which takes less time to process. In [1], a scheduling algorithm
that uses an N-state Markov model to characterize the channel
is presented. This algorithm supports adaptive modulation and
coding (AMC), which are used to adjust the modulation and
FEC to the forecasted channel state. The idea of assigning
higher data rates to hosts with a better channel – to maximize
throughput while ensuring acceptable bit-error rate (BER) – is
used by [9], [17].

In the uplink channel of an OFDM network, multiple
hosts can transmit simultaneously over different sub-carriers.
Since the channel characteristics for different users may be
independent, dynamic assignment of sub-carriers to hosts can
significantly improve the throughput [21], [22]. However,
this “water filling” approach for maximizing instantaneous
throughput does not take into account the QoS requirements
of these packets, and it is therefore unsuitable for traffic of
delay sensitive applications (like voice over IP). The authors
of [15] address this problem in the context of OFDMA, by
allocating sub-carriers to hosts in a way that satisfies the
rate requirements of each host, while using minimum power.
In [20], utility-based cross-layer optimization problems are
defined. In [23], the authors provide an algorithm for OFDMA
power assignment.

III. PROBLEM FORMULATION AND COMPLEXITY
CLASSIFICATION

Consider a set of PDUs with arbitrary sizes awaiting trans-
mission. Each PDU can be transmitted using several different
PHY-profiles, where each such a profile includes a modulation
technique, code rate, and FEC. There are two possible timings
for selecting a PHY-profile for each PDU. The first is to
determine the PHY-profile for each PDU in advance (a priori),
and only then to choose the PDUs for transmission. The
second is to determine first the profit of scheduling each PDU
using each of the possible PHY-profiles, and only then to let
the scheduler pick, on the fly, at most one instance for each
PDU. In other words, with the a priori approach the selection
of PHY-profiles is not performed by the macro scheduler,
but by another algorithm that is executed before the macro
scheduler has to make its decisions. We assume that even if
the selection of a PHY-profile is performed a priori, the base
station has the same information about the physical layer that
it has when this selection is performed on the fly. Hence,
the advantage, to be shown later, of using the on the fly
approach, stems from the coupling between the selection of a

PHY-profile for each PDU and the other tasks of the macro-
scheduler. We address the a priori PHY-profile selection in
Section IV, and the on the fly selection in Section VI.

The scheduling space in every frame is a two dimensional
matrix, of T time slots and C OFDMA logical channels. Due
to physical layer considerations, the scheduler must divide
this matrix into rectangles, where each rectangle is used for
the transmission of one or more PDUs from the same PHY-
profile [11]. Each of these rectangles is referred to as a burst.
In the beginning of the frame, each rectangle has an overhead
for describing its exact location within the frame and its PHY-
profile attributes. The size H of this overhead is constant for
each burst. In other words, there are several PDUs within a
burst and the overhead is per burst and not per PDU. Note
that in the variant of the problem considered in this paper,
every user must decode the entire downlink frame in order to
decide which PDUs to read. There is another variant, where
the map indicates which burst should be decoded by which
user. In the latter variant, in addition to the fixed overhead per
burst, there is a fixed overhead per user in every burst. Due to
lack of space, we do not explicitly address the latter variant.
However, the algorithms we present can be adjusted to solve
it as well.

The goal of the scheduler is to maximize the profit gained
by the transmitted PDUs in each frame. This goal requires
the scheduler to make two types of decisions for every
downstream frame:

MaSP: A Macro Scheduling Decision: Deciding which
PHY-profiles will be accommodated in this frame, and
which PDUs will be transmitted for every selected PHY-
profile, assuming that the association between PDUs and
their PHY-profiles has already been determined.

MiSP: A Micro Scheduling Decision: Deciding how many
rectangles (bursts) will be used for each PHY-profile, and
where to locate each rectangle within the frame.

We later show that the macro scheduling problem (MaSP) is
equivalent to the well-known NP-hard Multiple-Choice Knap-
sack Problem [13]. The micro scheduling problem (MiSP) is
associated with a tradeoff that has a critical impact on the
performance of the downstream channel. On one hand, it is
important to minimize the number of bursts for each PHY-
profile, because each such burst has a significant overhead
header. On the other hand, with smaller rectangles it is easier
to minimize the bandwidth that is allocated to a rectangle but
not fully used.

The table in Figure 3 classifies the two problems with
respect to their computational complexity. Both problems are
NP-hard. However, we prove that they can be solved in
polynomial time within (1 + ε) from their optimum, for any
ε > 0. The selection of ε has, of course, a critical effect on
the running time of the scheduler. The last row in the table
is related to the extended MaSP problem, to be discussed in
Section VI.

IV. THE MACRO SCHEDULING PROBLEM (MASP)
We start with a formal definition of MaSP.
Problem 1 (MaSP):
Instance: The frame’s size L = T ·C, the overhead H for

using a PHY-profile, and a set P = {p1, p2, . . . , pn} of
PDUs awaiting transmission. Each PDU pi is associated
with a PHY-profile PHY (pi), a non-negative profit p(pi),
and a non-negative size s(pi).
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Problem NP-hard Approximation guarantee Running time
MaSP (Macro Scheduling Problem) Yes (1 + ε)-approximation for every fixed ε polynomial in 1/ε
MiSP (Micro Scheduling Problem) Yes (1 + ε)-approximation for every fixed ε not polynomial in 1/ε

E-MaSP (Extended MaSP) Yes ( e
e−1 + ε)-approximation for every fixed ε polynomial in 1/ε

Fig. 3. Computational Complexity and Running Time for the Various Scheduling Problems

Objective: Find a feasible subset P
′ ⊆ P of PDUs with a

maximum profit. The size of a subset P ′ is the cumulative
size of its PDUs plus a penalty of H for every used PHY-
profiles. A feasible subset is a subset whose size is ≤ L.
The profit of a subset P ′ is the cumulative profit gained
by its PDUs.

We note that the well-known Knapsack problem is a special
case of MaSP, with only one PHY-profile. The Knapsack
problem is defined as follows:

Instance: A set S of items s1, s2, . . . , sm and a capacity
c. Each item si has profit p(si) and a weight w(si).

Objective: Find a subset S
′ ⊆ S of items such that this

subset has a feasible packing, namely,
∑

sj∈S′ w(sj) ≤ c,
and the aggregated profit

∑

sj∈S′ p(sj) is maximized.
We now show that MaSP is polynomially equivalent to the

Multiple-Choice Knapsack Problem (MCKP). Therefore, an
algorithm for MCKP can also solve MaSP with the same
performance guarantee. MCKP is defined as follows:

Instance: Disjoint classes N1, . . . , Nm of items, and a
capacity c. Each item s ∈ Nj has a profit p(s) and a
weight w(s).

Objective: Find a subset S ′ of items with at most one item
from each class that has a feasible packing, such that the
aggregated profit

∑

sj∈S′ p(sj) is maximized.
Definitions:
1) An r-approximate solution for a maximization problem

is a feasible solution whose profit is at least 1
r the profit

of the optimal solution.
2) An r-approximation algorithm is an algorithm that al-

ways finds an r-approximate solution.
3) An approximation scheme is an algorithm that receives

a parameter ε > 0 along with the problem instance and
produces a (1+ε)-approximate solution for the specified
instance.

4) A Polynomial Time Approximation Scheme (PTAS)
is an approximation scheme whose running time is
polynomial in the size of the input.

5) A Fully Polynomial Time Approximation Scheme (FP-
TAS) is a PTAS whose running time is also polynomial
in 1

ε .
6) A pseudo-polynomial time algorithm is an algorithm

whose running time is polynomial in the numeric value
of the input. In contrast, a polynomial time algorithm
is polynomial in the size of the input (the number of
digits).

Both Knapsack and MCKP have several known approxi-
mation algorithms [13], and both have an FPTAS [13]. In
addition, both problems have pseudo-polynomial dynamic
programming algorithms that find the optimal solution [13]. In
particular, there exists a pseudo-polynomial algorithm whose
running time is O(n · c), where n is the number of items and
c is the knapsack capacity. Such an algorithm is practical only
when c is small.

Theorem 1: MaSP can be solved optimally in pseudo-
polynomial time by a transformation to MCKP.
Proof: We transform an instance of MaSP to an instance of
MCKP such that a feasible solution for MCKP with profit
p is also a feasible solution to MaSP with the same profit.
Therefore, an optimal solution for MCKP is also an optimal
solution for MaSP. The knapsack size is set to T ·C. For each
PHY-profile phy, we define a class of items Nphy. We define
an item sA ∈ Nphy for every subset A of PHY-profile phy,
where w(sA) = H +

∑

a∈A w(a) and p(sA) =
∑

a∈A p(a).
It is easy to see that a feasible solution to MCKP with profit
p is also a feasible solution to MaSP with profit p.

At first glance it seems that the time required for this
reduction is not polynomial, because the number of subsets
is exponential. However, if there are two subsets A and A′

such that w(sA) = w(sA′), then only the one with the greatest
profit will be selected. There are at most T ·C different item
sizes, and for each size the item’s profit can be found by
an O(n · T · C) algorithm for the single knapsack problem.
Furthermore, a careful implementation will find the profit for
all possible sizes at once, thereby reducing the total running
time to O(T · C · n) for each profile. Thus the total running
time of MaSP is O(T 2 · C2 · n · number-of-PHY-profiles).

Typical dimensions of an OFDMA frame are T ≈ 20 and
C ≈ 60. For these values it is reasonable to use the reduction
described in Theorem 1. However, for theoretical completeness
it is important to note that the same transformation to MCKP
can also be performed implicitly, in polynomial time.

Theorem 2: MaSP has an FPTAS; i.e., an approximation
scheme whose running time is polynomial in 1

ε .
The proof is presented in Appendix I.

V. THE MICRO SCHEDULING PROBLEM (MISP)
A. Computational analysis of MiSP

After the macro scheduler selects the set of PDUs to be
transmitted, the micro scheduler has to build the transmission
matrix from rectangles. The scheduler represents each PHY-
profile as a sequence of one or more contiguous rectangles,
and it faces the following trade-off. It can use many rectangles
for each PHY-profile, thereby minimizing the leftovers at the
end of each rectangle, it can use the opposite approach of a
single rectangle for each PHY-profile, thereby minimizing the
header overhead. Figure 4 depicts both approaches for 4 PDUs
from the same PHY-profile set, whose sizes are 7, 7, 8, and
1. The first method consumes more space due to the burst
overhead H = 3, while the second one consumes more space
due to leftovers. A good scheduler should find the golden mean
between these two opposite approaches.

We now formally define MiSP:
Problem 2 (MiSP):
Instance: An enveloping rectangle R = [0, W ] × [0, V ],

where W and V are integers, and a set I of n items.
Without loss of generality, throughout this section we
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Fig. 4. The Two Approaches for Micro Scheduling

assume V ≤ W . For every item i ∈ I , we are given
a positive integral size s(i) and a positive profit p(i).
The aggregated size of all items does not exceed the size
of R, namely,

∑

i∈I s(i) ≤ V ·W .
Objective: Find a feasible placement of the items in R
with maximum profit. A placement is a pair (I ′, f), where
I ′ ⊆ I and f is a function from I ′ to (R ∩ (N×N), N).
If f(i) = (p, w), then the width of item i is chosen
to be w (thus, its height is

⌈

s(i)
w

⌉

) and its bottom left
point in R is located at point p. A feasible placement
must fulfill the following requirements: (1) ∀i ∈ I ′ the
corner points of the rectangle of item i are inside R; (2)
∀i, j ∈ I ′ ∧ (i 6= j) the rectangles of items i and j do
not intersect.

Theorem 3: MiSP is NP-hard. Moreover, unless P=NP,
MiSP does not have an FPTAS even in the special case where
the profit of a burst is equal to its size, i.e., ∀i ∈ I s(i) = p(i).
The proof is presented in Appendix II.

B. A Linear Time Dual Approximation for MiSP
Whereas an approximation algorithm returns a suboptimal

solution that meets all the constraints, a dual approximation
returns a solution whose profit is at least as high as that of the
optimal solution while relaxing some of the constraints. This
process is known as resource augmentation. The performance
guarantee of a dual approximation is the factor by which the
resource is augmented. We use the concept of resource aug-
mentation by relaxing W, the width of the enveloping rectangle
R (or V if V > W ). In order for a dual approximation of MiSP
to integrate with MaSP, the matrix size given to MaSP should
be smaller than the actual size by some factor.

If the MiSP enveloping rectangle had been continuous, i.e.,
the slot length had been arbitrarily small, the problem could
have been easily solved by setting the width and the length
of rectangle i (for burst i) of size s(i) to be V and s(i)

V
respectively. Applying this intuition as is to the discrete case
would result in a lot of wasted space, since even the smallest
item would consume at least V slots. In the following we
present an algorithm that captures this rationale yet deals with
small profiles without wasting a lot of space. The algorithm

is a dual approximation, namely, it can place all items using a
space of (1+f(V ))OPT , where OPT is the space required for
optimal placement of all items and f(V ) is a O(V − 1

5 ). The
main idea behind the proposed algorithm is to partition the
items into sets in which all items are roughly the same size,
and to place each set in separate columns of the enveloping
rectangle. This idea is also used in [12] for solving a different
variation of the micro scheduling problem1.

The following is an algorithm for MiSP, with a (1+f(V ))-
approximation guarantee. The value of f(V ) is O(V − 1

5 ), as
discussed later.

Algorithm 1 (An efficient dual approximation for MiSP):
1) Let k be a constant whose value is discussed later.
2) Partition the items into 3 sets P0, P1, P2 in the following

way. The set P0 contains every item whose size is ≤ k,
the set P1 contains every item whose size is in (k, k

3

2 ],
and the set P2 contains every item whose size is > k

3

2 .

3) For i = 0, 1 do
a) Set ri ←

⌈

k1−2−i
⌉

b) Round up the size of each item in Pi to an exact
multiple of ri.

c) Place Pi in a sequence of ri consecutive columns,
using a next-fit bin-packing algorithm, as presented
in [10] (Chapter 2). Each such a sequence is now
referred to as a bin.
Spread out every item in Pi across the entire width
of its bin (see Figure 5).

4) Round up all the items in P2 to an exact multiple of V
and place them in some arbitrary order spread out across
the entire height of the enveloping rectangle.

Theorem 4: Algorithm 1 is a (1 + f(V ))-approximation.
More specifically, for k = V

4

5 it has a (1 + O(V − 1

5 ))-
approximation performance guarantee.
Proof: We need to show that the items can be fitted with an
overhead of only a small fraction of the space they occupy.
In the worst case, the total size of the items is tight, namely,
V ·W =

∑

i∈I s(i). Compared to the impractical continuous

1Our work, which was originally reported in [4], was conducted indepen-
dently of [12].
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Fig. 5. An example of Algorithm 1, with k = 9

algorithm which has no “wasted space”, the wasted space
of Algorithm 1 stems from steps 3(b), 3(c), and 4. We now
analyze the contribution of each of these components to the
total wasted space.

In step 3(b), space is wasted because the size of the item
is rounded up to an exact multiple of ri =

⌈

k1−2−i
⌉

. Thus,
each item consumes at most ri−1 more slots than its size. For
P0, there is no wasted space because ri − 1 = 1− 1 = 0. For
P1 the size of the smallest item is at least k and it is rounded
to a multiple of

⌈√
k
⌉

. Therefore, the total fraction of wasted

space is
(⌈√

k
⌉

− 1
)

/k <
√

k/k = 1/
√

k.
In step 3(c) space is wasted because not all the bins are

completely filled. Note that the height of each item in Pi is
at most k, because the maximum size of any item in Pi is
k2−2−i , and each item is spread out across ri =

⌈

k1−2−i
⌉

consecutive columns. Therefore, all the bins except at most
one are at least (V − k)-full. Since the size of each bin is V ,
the fraction of wasted space is k

V . For the last bin the wasted
space is at most 100%, namely, ri ·V . The total wasted space
due to the last bin of step 3(c), for all iterations, is therefore
V · (r0 + r1) = V · (1+

⌈√
k
⌉

). The wasted space is bounded

by V (1+d√ke)
V ·W =

1+d√ke
W of the total space V · W . Since

V ≤W , the total wasted space is bounded by 1+d√ke
V .

In step 4, space is wasted because the size of every item is
rounded up to an exact multiple of V . The minimum size of
any item in P2 is at least k3/2, and each item wastes at most
V slots. Therefore, the fraction of wasted space is V

k3/2
.

To summarize, the total approximation guarantee A(V, k) is
bounded by:

A(V, k) ≤ k/V +
(

1 +
⌈√

k
⌉)

/V + 1/
√

k + V/k
3

2 .

This function can be minimized for k = V
4

5 , in which case
we get A(V, V

4

5 ) = O(V − 1

5 ).
Theorem 5: The running time of Algorithm 1 is linear in

the number of items.
Proof: Steps 2 and 4 can be performed in a constant time per
item. The linear running time of step 3(c) follows from [10]
(Chapter 2).
The next-fit bin-packing algorithm was good enough to
achieve the approximation ratio. However, in practice, al-
gorithms that outperform next-fit can improve the perfor-
mance. One of these algorithms is the best-fit decreasing
algorithm [10] (Chapter 2), which runs in O(n log n).

In Appendix III we present a dual PTAS for MiSP that
uses Algorithm 1 as a subroutine. Using this algorithm, one
can also derive a constant approximation (not just a dual
approximation) for MiSP by extracting a feasible solution from
a super optimal dual solution. Using partial enumeration and
the dual MiSP, these techniques can also deliver a PTAS for
MiSP.

C. Heuristics for MiSP
Having presented an algorithm with worst-case performance

guarantee, we now present several heuristics for MiSP. While
these algorithms might not perform very well in the worst case
scenario, their performance is very good in practice, as shown
in Section VIII.

The first algorithm is called Increasing Size. The rationale
behind this algorithm is to schedule items of roughly the same
size next to each other. A variation of this idea was used in
Algorithm 1. However, while in Algorithm 1 the boundary
between two sets is fixed, the Increasing Size algorithm tries
to set it dynamically.

Algorithm 2 (An increasing size algorithm for MiSP):
1) Maintain the PHY-profiles as a list L sorted by their size

in increasing order.
2) While there are PHY-profiles left in L do

a) For every k and t, check the relative space wasted
when scheduling the first t PHY-profiles that fit on
bins of k consecutive rows. This is the classic bin-
packing problem of the first t PHY-profiles where
each bin contains k consecutive rows and each item
is spread out across the entire height of the bin. The
space used, S, is k · T times the number of bins
used, so the relative space wasted is S over the
sum of sizes of the first t PHY-profiles.

b) Select the PHY-profiles that produce the minimum
relative wasted space.

c) Remove the selected items from L, i.e., the first t
items for the choice of k and t that minimized the
space wasted.

Claim 1: The maximum value of k in Algorithm 2 is
bounded by 2C.
Proof: From Algorithm 1 and Theorem 4 we know that there
exists a schedule such that the number of rows is at most C ·
(1+T−1

5 ). We expect Algorithm 2 to outperform Algorithm 1,
but one can see that every choice of k > C ·(1+T−1

5 ) clearly
performs worse. Therefore, the maximum value of k in which
this heuristic outperforms Algorithm 1 is bounded by 2C.

Let n be the number of PHY-profiles. It is easy to see that
t ≤ n, and that the total number of choices of k and t for a
single iteration is bounded by 2C · n. The running time for
applying the best-fit decreasing algorithm for the bin-packing
problem is O(n log n). Therefore, the total running time for
a single iteration of the algorithm is 2C · n · n log n, and the
total running time O(2C · n3 log n). Since a typical value of
n is smaller than 10, and a typical value of C is smaller than
100, this running time can be considered reasonable.

The next algorithm is called Decreasing Size. The rationale
behind this algorithm is the same as for Increasing Size.
However, PHY-profiles are considered in reverse order, so that
the asymptotic running time will decrease when the best-fit
decreasing bin-packing algorithm is used.

Algorithm 3 (A decreasing size algorithm for MiSP):

6



Same as Algorithm 2, except that in step 1 the items are
sorted in decreasing order.

The running time of Algorithm 3 is similar to that of
Algorithm 2. However, as t grows, we can use the result of the
previous iteration because the new PHY-profile has a smaller
size. This reduces the total running time to O(2C · n2 log n).

The last algorithm we present is called Best Fit. The intu-
ition behind this algorithm is to dynamically choose items that
locally minimize the wasted space. In the previous algorithms
this was achieved by selecting items that are roughly the
same size. Here we try to achieve this goal by optimizing the
schedule on k consecutive rows, as in Algorithm 1. But unlike
Algorithm 1, this algorithm tries all possible combinations of
PHY-profiles, and picks the best one.

Algorithm 4 (A best fit algorithm for MiSP):
1) Add all PHY-profiles to a list L.
2) While there are PHY-profiles left in L do

a) For every k, check the relative space wasted when
scheduling any PHY-profiles with a fixed height
of k. This is a knapsack problem, where items are
spread out across the entire height of the knapsack.
The relative space wasted is k · T over the sum of
sizes of the scheduled items.

b) Select the PHY-profiles that produce the minimum
relative wasted space.

c) Remove the selected items from L.
The total running time of Algorithm 4 is O(2C · T · n2),

where n is the number of PHY-profiles, because Claim 1
applies here as well. The running time of single iteration is,
therefore, 2C ·T ·n, and the total running time is O(2C ·T ·n2).
Since a typical value of T is ≤ 40, this running time can be
considered reasonable.

VI. THE EXTENDED MACRO SCHEDULING PROBLEM
(E-MASP)

As discussed in Section III, another approach for MaSP is
not to decide in advance (off-line) what the PHY-profile of
every PDU should be, but rather to make this decision on-
line, as part of MaSP. As far as we know, this idea has never
been considered before. The resulting optimization problem,
referred to as E-MaSP (Extended MaSP), is defined as follows:

E-MaSP: An Extended Macro Scheduling Decision: De-
ciding which PHY-profiles will be used for every PDU,
which PHY-profiles will be accommodated in the next
frame, and which PDUs will be transmitted for every
selected PHY-profile.

An E-MaSP-based scheduler has advantages over a MaSP-
based scheduler especially when the channel is not heavily
loaded. As an example, consider a single PDU waiting for
transmission. The MaSP-based scheduler will choose to sched-
ule this PDU using a pre-determined PHY-profile. In contrast,
due to the availability of bandwidth, the E-MaSP-based sched-
uler will transmit this PDU using the most robust PHY-profile.
Hence, the profit gained by the E-MaSP scheduler in this case
is likely to be higher than the profit gained by the MaSP
scheduler, and this extra profit is gained at no additional cost.

We now formally define E-MaSP:
Problem 3 (E-MaSP):

Instance: The frame’s size L = T · C, the overhead H
for using a PHY-profile, a set P = {p1, p2, . . . , pn}
of PDUs awaiting transmission, and a set PHY =

{PHY1, PHY2, . . . , PHYm} of PHY-profiles. Each pair
of PDU pi and PHY-profile PHYj is associated with a
non-negative profit p(PHYj(pi)) and non-negative size
s(PHYj(pi)). These profit and size are relevant when the
considered PDU is transmitted using this specific PHY-
profile. In addition, each PHY-profile has a fixed overhead
H .

Objective: Find a feasible schedule S with maximum
profit. A schedule is a subset P ′ of PDUs and an
assignment function f from P ′ to PHY . The size of
a schedule S is equal to H times the number of PHY-
profiles used by S, plus the cumulative size of the
accommodated PDUs (recall that the size for each PDU
depend upon the PHY-profile selected for it), namely,
H ·|∪pi∈P ′f(pi)|+

∑

pi∈P ′ s(f(pi)). A feasible schedule
is a schedule whose size is ≤ L. The profit of a subset
S is the cumulative profit gained by the scheduled PDUs
with respect to the PHY-profile selected for each of them,
namely,

∑

pi∈P ′ p(f(pi)).
Note that in some cases a PDU is destined to a user that does

not support certain PHY-profiles. This case can be captured by
E-MaSP by assigning a 0 profit to the combination of this PDU
and each such PHY-profile.

In Sections III and IV we showed that both MaSP and MiSP
are NP-hard but can be approximated with arbitrarily close
precision in polynomial time (see Figure II). In the following
we show that E-MaSP is not only NP-hard, but also cannot
be approximated with a factor smaller than e

e−1 . This implies
that E-MaSP is computationally harder than MaSP and MiSP.

Theorem 6: E-MaSP is NP-hard. Moreover, it cannot be
approximated within a factor small than e

e−1 .
The proof is presented in Appendix IV.

An observation from the proof of Theorem 6 is that E-
MaSP is a generalization of the Budgeted Maximum Coverage
Problem [14]. The latter is a generalization of the Maximum
Coverage Problem, in which the Si subsets have arbitrary
costs.

A key difference between Budgeted Maximum Coverage
and E-MaSP is that even if we know which PHY-profiles
should be used in the optimal schedule, we still have to find
a valid assignment of PDUs to these PHY-profiles, since the
PDUs have a non-negative size and non-negative profit for
each PHY-profile. Therefore, an algorithm must also find an
assignment of PDUs to the selected PHY-profiles. In addition,
it must find a way to treat PDUs that were selected to PHY-
profiles with low profit and low size. Such PDUs should be
reconsidered for an “upgrade” to a PHY-profile with a higher
profit and size.

In the following we present an approximation algorithm for
E-MaSP, which is a generalization of the greedy algorithm
proposed in [14] for Budgeted Maximum Coverage. The main
idea behind the new algorithm is to define the residual profit
of PDUs that have already been selected by the scheduler
as the original profit minus the profit gained when the PDU
was previously selected. The rationale behind this is that by
selecting a PDU for one PHY-profile instead of the other
we gain only the profit difference and pay only for the
size difference. The algorithm iteratively picks up the best
combination of a PHY-profile and a set of PDUs assigned to
it, until the frame’s capacity L = T · C is reached. When
this greedy selection ends, its output is compared to the most
profitable schedule of a single PHY-profile. From these two
schedules, the one with the highest profit is chosen.
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Algorithm 5 (A greedy algorithm for E-MaSP):
1) Let S be an empty schedule.
2) While changes are made to S do:

a) If there is a PHY-profile φ that has already been
selected to S and a PDU m such that (a) the
residual size of assigning m to φ is not positive,
and (b) the residual profit of assigning m to φ is
positive, then add m to S and assign it to φ.

b) Otherwise, if there is a PHY-profile φ and a set
of PDUs M such that (1) the residual size of
assigning any PDU from M to φ is non-positive,
(2) the residual profit of assigning any PDU from
M to φ is positive, and (3) the total size of adding
φ and M to S while assigning all the PDUs from
M to φ is non-positive, then add φ and M to S
and assign all the PDUs in M to S.

c) Otherwise, select a PHY-profit φ and a set of PDUs
M , such that by adding φ to S and assigning all the
PDUs in M to φ we achieve the highest residual
density (the residual density is the residual profit
divided by the residual size). Add φ to S and assign
all the PDUs from M to S.

3) Find a maximum profit schedule with exactly one PHY-
profile. If the profit of this schedule is greater than the
profit of S, as found in the previous steps, return this
schedule. Else, return S.

During each iteration of the algorithm at least one PDU is
chosen. Therefore, the combination of this PDU and the PHY-
profile to which it is chosen will not be considered again.
Thus, Algorithm 5 has at most n · m iterations, where n is
the number of PDUs and m is the number of PHY-profiles.
Although finding a set with maximum density, as required in
step 2(c), is NP-hard, such a set can be found by a pseudo
polynomial algorithm. Since L is in the order of 1200, using a
pseudo polynomial algorithm is reasonable. If L is too large,
an (1+ε)-approximation can be applied and it will only affect
the approximation analysis by (1 + ε).

Theorem 7: Algorithm 5 is a ( 2e−1
e−1 )-approximation2 for E-

MaSP. Moreover, this algorithm can be implemented in O(m2 ·
n2 · L) where n is the number of PDUs, m is the number of
PHY-profiles, and L is the size of the frame.
Proof: Algorithm 5 is a special case of the algorithm we
presented in [6], for which this performance guarantee is
proven.
Algorithm 5 can be extended using partial enumeration to get
an e/ (e− 1) + ε performance guarantee, which is the best
possible up to an ε.

VII. MULTI FRAME OPTIMIZATION

The discussion so far addresses the optimization of a single
frame. However, in practice one would be more interested in
optimizing the performance of the whole system. In particular,
maximizing the profit from a sequence of consecutive frames
(“global optimization”) is more important than maximizing
the profit of a single frame (“local optimization”). An optimal
local solution does not necessarily yield an optimal global
solution. For example, consider the case where a PDU has
a small profit in the current frame and a higher profit in a
future frame. This happens if the channel conditions for the
destination host are momentarily bad. Assuming there are no

2(2e − 1) / (e − 1) ≈ 2.58

other pending PDUs, the local optimizer would schedule this
PDU in the current frame, whereas a global optimizer would
leave this PDU for a future frame.

To simplify discussion, consider the most simple model for
a local optimizer, where the OFDMA matrix has only one
logical channel and only one PHY-profile. In this case, the
local optimization can be viewed as a plain Knapsack problem.
The corresponding global optimization problem can be viewed
as the Generalized Assignment Problem (GAP), defined as
follows [3]:

Instance: A pair (B, S) where B is a set of m bins
(knapsacks) and S is a set of n items. Each bin b ∈ B
has capacity c(b). For each item i and bin b, s(b, i) and
p(b, i) are the size of item i in bin b and the profit of
item i in bin b respectively.

Objective: Find a feasible assignment with maximum
profit. An assignment is a function f from S to B ∪
{NIL}. A feasible assignment is an assignment such that
∀b∈B

∑

i|f(i)=b s(b, i) ≤ c(b). The profit of an assignment
is

∑

i p(f(i), i), where ∀ip(nil, i) = 0.
The sequence of OFDMA frames are represented by the bins,
the PDUs are represented by the items, and a PDU has
a different profit p(b, i) and size s(b, i) for each frame. A
different size is possible because different modulations might
be considered for the same PDU in different frames.

Even in this simple case, the global optimization problem
is computationally much harder than the local optimization
problem. This is because, unlike Knapsack, GAP does not
have an FPTAS or even a PTAS [3]. Therefore, a constant
approximation algorithm is theoretically the best possible.

In [7], we present a generic approach to transform a local
optimization algorithm A into a global optimization algorithm
B under the following conditions: (1) if S is a feasible solution
then any subset of S is also a feasible solution; and (2) the
objective is to maximize the total aggregated profit. If A is an
α-approximation for the local optimization problem, then the
approach from [7] guarantees that B is a (1+α)-approximation
for the global problem. The running time of B for n frames is
n times the running time of A. Since both of these conditions
hold in our OFDMA model, this approach can be used to
provide a global optimization for multiple frames.

VIII. SIMULATION STUDY

The purpose of this section is two-fold. First, to compare the
performance of the MiSP algorithms presented in Section V.
Second, to compare between the performance of the MaSP
and the E-MaSP algorithms. In the following graphs, the
performance is measured against the T · C lower bound,
namely, the actual size of the PHY-profiles. We measure the
wasted space used by every algorithm: we view the extra
space as the difference between the actual size of PHY-
profiles and T · C and the ratio between the extra space and
T · C as the overhead (space wasted). During the simulation
study, we consider a Gaussian distribution for the PHY-profile
sizes, with a mean of T ·C

n . With this distribution, all PHY-
profiles are roughly the same size. Simulations under different
distributions, such as uniform, or under different means, show
similar results. Note that typical values of C, T , and n are
35 ≤ C ≤ 70, 13 ≤ T ≤ 26, and 3 ≤ n ≤ 8.

Figure 6(a) shows the effect of C on the performance,
assuming T = 20 and n = 6. Figure 6(b) shows the effect
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Fig. 6. The Performance of the Algorithms as a Function of Various Parameters.

of n on the performance, assuming T = 20 and C =
60. Figure 6(c) shows the effect of T on the performance,
assuming C = 60 and n = 6, and Figure 6(d) shows the effect
of C

T on the performance, assuming C = 2.5T and n = 6.
From Figure 6(a) we can see that when C increases, the

performance of all the algorithms improve. This is because
when C and the PHY-profiles are bigger, the matrix can be
viewed as continuous, in which case the produced schedules
are closer to optimal.

In Figure 6(b), all the algorithms have similar performance
for n = 2. This is because the ways in which such a small
number of profiles can be scheduled are severely limited.
As n grows, the Best Fit algorithm has more combinations
of PHY-profiles to choose from (e.g. 2n − 1 in the first
iteration), while Increasing Size and Decreasing Size have only
n in their first iteration, and Dual has only 1. The difference
in the number of combinations between Best Fit and the
rest of the algorithms stems from the loose structure of the
scheduled items, i.e., the largest and smallest items can be
scheduled next to each other. Increasing Size and Decreasing
Size perform roughly the same, since they have the same
number of combinations to choose from. Dual has only 1, and
its performance decreases linearly with n. More specifically,
when T and TC

n are relatively large, the expected wasted
space per item is T

2 , and the total expected wasted space is
nT
2TC = n

2C . In Figure 6(b), where T = 20 and C = 60, we
get n

2·60 = n
120 .

From Figure 6(c) we can see that when T increases, the
performance of all the algorithms except Dual improves. The
Dual algorithm’s performance declines when T grows because,
for a high value of T , all items are relatively large, and are
rounded to an exact multiple of T . When T is small, there is a
greater chance for a PHY-profile size to be an exact multiple
of T . When T increases, the expected space wasted due to
this rounding is T

2 per item. Therefore, the total wasted space
when T is relatively large converges to nT

2CT = n
2C . For the

parameters in Figure 6(c), i.e., C = 60 and n = 6, we get
6

2·60 = 5%. For all the other algorithms, the improvement is
due to the greater chance that two or more items can be fit
into a single bin. Again, the number of combinations of PHY-
profiles to choose from plays a critical role.

Finally, Figure 6(d) shows that the algorithms are highly
scalable, because their performance improves when T and
C increase, which indicates that MiSP becomes easier to
solve. For the Increasing Size, Decreasing Size, and Best Fit
algorithms, this improvement is attributed to both the increase
in T (see Figure 6(c)) and the increase in C (see Figure 6(a)).
For the Dual algorithm, the improvement stems from our
earlier observation on Figure 6(c), where the performance
converges to n

2C when T increases.
We conclude this section by showing the advantage of E-

MaSP over MaSP. Although the proposed MaSP algorithm was
shown to be optimal, it can only assign each PDU to a single,
pre-determined, PHY-profile. In contrast, E-MaSP can assign
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Fig. 7. The Relative Performance Improvement of E-MaSP vs MaSP.

a PDU to every profile, but each assignment is associated
with a different profit and cost. Therefore, the performance
of E-MaSP is expected to be better than the performance
of MaSP. For the following simulation study, we consider
a Gaussian distribution of PDU sizes. In addition, we set
C = 60, T = 20, and a burst overhead of 5%. All physical
channel aspects are translated into an SNR, which, along
with PHY-profile, is translated into the packet loss probability.
We assume that the MaSP scheduler chooses the most cost-
effective PHY-profile for each PDU. That is, the PHY-profile
for which the probability for successful transmission divided
by the bandwidth cost is maximum.

Figure 7(a) shows the throughput improvement of E-MaSP
over MaSP as a function of the number of PHY-profiles,
for low (33%), medium (66%), and heavy (100%) loads. We
can see that the improvement of E-MaSP increases when the
number of PHY-profiles increases. The reason for this is that
the MaSP algorithm might select two high profit PDUs for
different PHY-profiles with close parameters. This increases
the overhead penalty without increasing the likelihood for
successful transmission. In contrast, E-MaSP tends to min-
imize the number of PHY-profiles when the effect on the
loss probability is negligible. Therefore, MaSP is likely to
accommodate more PHY-profiles in each frame, and, therefore,
to increase the bandwidth overhead and the bandwidth loss due
to fragmentation.

Figure 7(b) shows explicitly the correlation between the
load and the E-MaSP’s improvement. We can see that the
improvement is much higher for low loads. This is because
MaSP chooses the PHY-profiles without taking the load into
account. In contrast, E-MaSP upgrades PDUs to more robust
modulation schemes when there is enough available space.

IX. CONCLUSIONS

In this paper we defined and studied the intricate problem of
downlink scheduling on an OFDMA channel. The main con-
tributions of this paper are breaking the OFDMA scheduling
problem into two more tractable problems, referred to as macro
scheduling (MaSP) and micro scheduling (MiSP), analyzing
the computational complexity of these two problems, and
developing efficient algorithms for solving them.

We showed that MaSP can be solved optimally in pseudo-
polynomial time by transforming it into the Multiple Choice
Knapsack Problem, and that it can be approximated with

an arbitrarily good precision in polynomial time. Then, we
showed that MiSP is a more difficult problem than MaSP,
in the sense that a (1 + ε)-approximation scheme for this
problem cannot run in in polynomial time in 1

ε . Nevertheless,
we presented several efficient algorithms for MiSP.

We also presented an extended version of the macro
scheduling problem, called E-MaSP. In this version, the as-
sociation between a PDU and its PHY-profile is determined
on-line by the scheduler, as part of the macro scheduling. We
showed that E-MaSP has an advantage over MaSP especially
when the channel is underloaded, because in such a case the
probability for a successful transmission of a PDU using the
PHY-profile determined by E-MaSP is greater than when the
PHY-profile is determined in advance regardless of the load in
the channel. However, the performance gains achieved by E-
MaSP comes at the expense of higher running time complexity.

One of our most important results was that the Best Fit
algorithm performs better than the other MiSP algorithms. In
particular, with typical parameters, this algorithm wastes only
2.5% of the total scheduling space.

APPENDIX I
PROOF OF THEOREM 2

To prove this theorem, we first describe a simple FPTAS
for MCKP. Although this is not the algorithm with the best
running time, it is probably the simplest one.

Let M [i, j] be a table of size m×P , where m is the number
of classes of items, and P is the sum of the profits of all items.
Let M [i, j] be the minimum size knapsack with profit gain j
from the N1, N2, . . . , Ni classes, and let n be the number
of items. Using dynamic programming, M can be filled in
O(n · P ) time. In order to solve MCKP in polynomial time,
we scale all profits by a factor of n

ε·P , and then calculate M
using the new scaled profits. The returned solution must be
within a (1 + ε) factor from the optimum [13]. Note that if
there are two items with the same profit, the above algorithm
selects the one with the lowest size.

The algorithm uses profit scaling and therefore is concerned
only with a polynomial number n/ε of different profits. Hence,
the reduction can be performed implicitly, in the following
way. Whenever the above algorithm seeks an item with a
specific scaled profit, it chooses the minimum weight item with
this profit gain. Therefore, an approximation that uses profit
scaling can be implemented in polynomial time. Specifically, it

10



takes O
(

n3/ε
)

to compute the profits and weights for a single
PHY-profile and O

(

n3/ε2 · number-of-PHY-profiles
)

in total.
Since this is basically the same reduction, a feasible solution
for MCKP with profit p is also a feasible solution to MaSP
with the same profit. Thus, an α-approximation for MCKP is
also an α-approximation for MaSP.

APPENDIX II
PROOF OF THEOREM 3

We first present a known NP-complete problem, called
Equipartition [8]:

Instance: A set I of 2m items. Each item i has a positive
integral size s(i), and

∑

i∈I s(i) = 2S.
Objective: Find a subset I ′ ⊆ I of items such that
∑

i∈I′ s(i) =
∑

i∈I\I′ s(i) = S, and |I ′| = m.
We reduce Equipartition to MiSP. Each Equipartition item i
is transformed into an MiSP item i∗. Both weight and profit
of item i∗ are set to 2(s(i) + S) + 1. This guarantees that all
sizes are odd. We also set V = 2 and W = 2S + 2mS + m.
We call each (i, j)-entry in the enveloping rectangle a slot.

If there is a valid equipartition of I , then all items can be
placed in the two different rows, such that each row contains
exactly m items. Since all sizes are odd, no item can be spread
over two rows without wasting a slot. Moreover, no row may
contain more than m items, since the sum of weights of each
set of m+1 or more items is at least (m+1)(2S+1) = 2Sm+
2S + m + 1 > 2S + 2Sm + m. This implies that if no valid
equipartition exists, the optimal MiSP solution cannot contain
all items and its maximum profit is at most 2S+4Sm+2m >
4S + 4Sm + 2m− 2S − 1.

We now show how to use an FPTAS for MiSP to solve
Equipartition. Suppose there is an FPTAS for MiSP, namely,
a (1 + ε)-approximation scheme whose running time is poly-
nomial both in n and 1/ε. When an equipartition exists,
the optimal profit of MiSP is 4S + 4Sm + 2m. When an
equipartition does not exist, the profit of MiSP is at most
2S + 4Sm + 2m. By setting

ε = 1/ (1 + 3m) = 2S/ (2S + 4Sm + 2Sm) <

2S/ (2S + 4Sm + 2m) =

(4S + 4Sm + 2m) / (2S + 4Sm + 2m)− 1,

we can distinguish between these two cases. If the running
time is polynomial in 1

ε = 3m+1, we can solve Equipartition
in polynomial time, which implies that P=NP.

APPENDIX III
A DUAL PTAS FOR MISP

Algorithm 1 has a fixed performance guarantee that de-
creases as V grows, and a linear running time. We now present
Algorithm 6, a dual PTAS for the MiSP. This algorithm is
impractical due to its very high running time. However, it
is presented for the sake of theoretical completeness. The
algorithm produces a dual (1 + ε)-approximation for every
ε > 0. Here we distinguish between two values of ε. We say
that ε is big if ε > f(V ), where f(V ) is the performance
guarantee of Algorithm 1, and it is small otherwise. When
ε is big, we can use Algorithm 1 to provide an approximate
solution. If ε is small, we again divide the solution into two
cases according on the size of W . We say that W is small
if W < 4V

ε2 and it is big otherwise. If W is small, we use

an optimal dynamic programming subroutine. If W is big, we
treat small items as jobs to be scheduled on parallel machines
(rows) to minimize the makespan, and we treat big items as
we did in Algorithm 1.

Algorithm 6 (A dual PTAS for MiSP):
1) If f(V ) < ε, run Algorithm 1 and return its solution.
2) Else,

a) If W ≤ 4V
ε2 , solve the problem optimally using

dynamic programming.
b) Else, partition the items into two sets of big and

small items. The set of big items, Pb, holds every
item whose size is > 2V

ε . The set of small items,
Ps, holds the rest of the items.

c) Treat each item in Pb in the same way items in
Pm are treated in step 4 of Algorithm 1. Namely,
round it to an exact multiple of V , and place it in
some arbitrary order spread out across the entire
height dimension.

d) Each item in Ps is placed in a single row. Each
of the V rows is considered as a machine and
each item as a job with the same size. Then, the
greedy algorithm from [10] (Chapter 9) is invoked
to schedule the jobs on the machines.

Theorem 8: The running time of Algorithm 6 is polynomial
in the number of items.
Proof: By Theorem 5, step 1 can be implemented in linear
time. It is easy to verify that steps 2(b)–2(d) can be imple-
mented in polynomial time. To implement step 2(a) we use a
dynamic programming procedure. For specific values A and B,
this procedure decides if all the items fit in R′ = [0, A]×[0, B].
In iteration i we examine all possible placements of item i. At
the end of the n’th iteration, we can tell if all items have been
placed. The number of possible configurations for each item is
at most A2·B, since there are at most A·B possible placements
of the upper left corner and at most A choices for the height.
Since there are 2A·B configurations of R′, the total complexity
is O(n · A2 · B · 2A·B). When the dynamic programming
procedure is used, W and V are small, namely, ε ≤ f(V )
and W < 4V

ε2 . Thus, this procedure runs in polynomial time
in n, but is exponential in 1

ε . By Algorithm 1, all items fit
in R′ = [0, W + Wf(V )] × [0, V ]. Therefore, the maximum
value of A and B are polynomial in V and W .

Theorem 9: Algorithm 6 is a dual (1 + ε)-approximation.
Proof: In the worst case, the total size of all the items is tight,
namely, V ·W =

∑

i∈I s(i). The performance guarantee of
step 1 stems from Theorem 4, and that of step 2(a) from the
optimality of the dynamic programming procedure. In step 2(c)
the big items are rounded up by at most V . Therefore, the total
space wasted for big items is < V

2V/ε = ε
2 . In step 2(d), at most

V rows waste space of 2V/ε, and the relative wasted space is
< 2V 2/ε

WV = 2V
Wε . Because W > 4V

ε2 , the relative wasted space
is < 2V ε2

4V ε = ε
2 . Therefore, the total relative wasted space in

step 2(c) and 2(d) is < ε.

APPENDIX IV
PROOF OF THEOREM 6

We first present the well-known NP-hard Maximum Cover-
age problem [6]:

Instance: A number k and a collection of sets S =
S1, S2, . . . , Sm, where Si ⊆ {x1, x2, . . . , xn}.
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Objective: Find a subset S
′ ⊆ S of sets, such that

∣

∣

∣
S

′

∣

∣

∣
≤

k and the number of covered elements
∣

∣

⋃

Si∈S′ Si

∣

∣ is
maximized.

We now show a reduction from Maximum Coverage to E-
MaSP. Each item xi in the Maximum Coverage instance is
transformed into a PDU. Each set Sj is transformed into a
PHY-profile. For an item xi and a set Sj , if xi ∈ Sj then the
profit and size of the assignment of the corresponding PDU
to the corresponding PHY-profile are 1 and 0 respectively. If
xi /∈ Sj , the profit and size are 0 and ∞ respectively. In
addition, the overhead H for every PHY-profile is set to 1,
and the frame size is set to k.

It is clear that at most k PHY-profiles can be scheduled in
the next frame. For the scheduled PHY-profiles, it is clear that
the total profit is not higher than the number of PDUs that can
be assigned to the selected PHY-profiles. Therefore, a schedule
that gains profit of p is translated into a maximum coverage
solution whose size is ≤ k that covers at least p items. This
proves that an optimal schedule gains no more than optimal
maximum coverage.

On the other hand, a maximum coverage solution of size
k that covers m elements can be transformed into a schedule
whose size is k and that schedules m PDUs. This is done
by choosing the corresponding PHY-profiles and assigning a
(covered) PDU to one of them. Therefore, an optimal schedule
gains as much as the optimal maximum coverage.

Since an optimal solution for maximum coverage can be
translated (in polynomial time) into an optimal solution for
the specific E-MaSP instance and vice versa then: (a) the fact
that Maximum Coverage is NP-hard implies that E-MaSP is
also NP-hard; (b) the fact that Maximum Coverage cannot
be approximated within a factor smaller than e

e−1 , under
standard assumptions3 [14], implies that E-MaSP also cannot
be approximated within the same factor.
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