1,382 research outputs found

    Multi-Higgs boson production in the Standard Model and beyond

    Get PDF
    We present a calculation of the loop-induced processes gg -> HH and gg -> HHH, and investigate the observability of multi-Higgs boson production at the CERN Large Hadron Collider (LHC) in the Standard Model (SM) and beyond. While the SM cross sections are too small to allow observation at the LHC, we demonstrate that physics beyond the SM can lead to amplified, observable cross sections. Furthermore, the applicability of the heavy top quark approximation in two- and three-Higgs boson production is investigated. We conclude that multi-Higgs boson production at the SuperLHC is an interesting probe of Higgs sectors beyond the SM and warrants further study.Comment: 17 pages, 17 figure

    Introducing TAXI: a Transportable Array for eXtremely large area Instrumentation studies

    Full text link
    A common challenge in many experiments in high-energy astroparticle physics is the need for sparse instrumentation in areas of 100 km2 and above, often in remote and harsh environments. All these arrays have similar requirements for read-out and communication, power generation and distribution, and synchronization. Within the TAXI project we are developing a transportable, modular four-station test-array that allows us to study different approaches to solve the aforementioned problems in the laboratory and in the field. Well-defined interfaces will provide easy interchange of the components to be tested and easy transport and setup will allow in-situ testing at different sites. Every station consists of three well-understood 1 m2 scintillation detectors with nanosecond time resolution, which provide an air shower trigger. An additional sensor, currently a radio antenna for air shower detection in the 100 MHz band, is connected for testing and calibration purposes. We introduce the TAXI project and report the status and performance of the first TAXI station deployed at the Zeuthen site of DESY.Comment: 4 pages, 3 figures, presented at ARENA 2014, Annapolis, MD, June 201

    Structural optimization and biological evaluation of 2-substituted 5-hydroxyindole-3-carboxylates as potent inhibitors of human 5-lipoxygenase.

    Get PDF
    Pharmacological suppression of leukotriene biosynthesis by inhibitors of 5-lipoxygenase (5-LO) is a strategy to intervene with inflammatory and allergic disorders. We recently presented 2-amino-5-hydroxy-1H-indoles as efficient 5-LO inhibitors in cell-based and cell-free assays. Structural optimization led to novel benzo[g]indole-3-carboxylates exemplified by ethyl 2-(3-chlorobenzyl)-5- hydroxy-1H-benzo[g]indole-3-carboxylate (compound 11a), which inhibits 5-LO activity in human neutrophils and recombinant human 5-LO with IC50 values of 0.23 and 0.086 ÎŒM, respectively. Notably, 11a efficiently blocks 5-LO product formation in human whole blood assays (IC50 = 0.83-1.6 ÎŒM) and significantly prevented leukotriene B4 production in pleural exudates of carrageenan-treated rats, associated with reduced severity of pleurisy. Together, on the basis of their high potency against 5-LO and the marked efficacy in biological systems, these novel and straightforward benzo[g]indole-3-carboxylates may have potential as anti-inflammatory therapeutics

    Next-to-leading order multi-leg processes for the Large Hadron Collider

    Get PDF
    In this talk we discuss recent progress concerning precise predictions for the LHC. We give a status report of three applications of our method to deal with multi-leg one-loop amplitudes: The interference term of Higgs production by gluon- and weak boson fusion to order O(alpha^2 alpha_s^3) and the next-to-leading order corrections to the two processes pp -> ZZ jet and u ubar -> d dbar s sbar. The latter is a subprocess of the four jet cross section at the LHC.Comment: 6 pages, 5 figures. Talk given at the 8th international Symposium on Radiative Corrections (RADCOR), October 1-5 2007, Florence, Ital

    Measurements and Simulation Studies of Piezoceramics for Acoustic Particle Detection

    Full text link
    Calibration sources are an indispensable tool for all detectors. In acoustic particle detection the goal of a calibration source is to mimic neutrino signatures as expected from hadronic cascades. A simple and promising method for the emulation of neutrino signals are piezo ceramics. We will present results of measruements and simulations on these piezo ceramics.Comment: 5 pages, 5 figure

    Plasmonic nanomeshes: Their ambivalent role as transparent electrodes in organic solar cells

    Get PDF
    In this contribution, the optical losses and gains attributed to periodic nanohole array electrodes in polymer solar cells are systematically studied. For this, thin gold nanomeshes with hexagonally ordered holes and periodicities (P) ranging from 202 nm to 2560 nm are prepared by colloidal lithography. In combination with two different active layer materials (P3HT:PC 61 BM and PTB7:PC 71 BM), the optical properties are correlated with the power conversion efficiency (PCE) of the solar cells. A cavity mode is identified at the absorption edge of the active layer material. The resonance wavelength of this cavity mode is hardly defined by the nanomesh periodicity but rather by the absorption of the photoactive layer. This constitutes a fundamental dilemma when using nanomeshes as ITO replacement. The highest plasmonic enhancement requires small periodicities. This is accompanied by an overall low transmittance and high parasitic absorption losses. Consequently, larger periodicities with a less efficient cavity mode, yet lower absorptive losses were found to yield the highest PCE. Nevertheless, ITO-free solar cells reaching ∌77% PCE compared to ITO reference devices are fabricated. Concomitantly, the benefits and drawbacks of this transparent nanomesh electrode are identified, which is of high relevance for future ITO replacement strategies

    Integration of Acoustic Detection Equipment into ANTARES

    Full text link
    The ANTARES group at the University of Erlangen is working towards the integration of a set of acoustic sensors into the ANTARES Neutrino Telescope. With this setup, tests of acoustic particle detection methods and background studies shall be performed. The ANTARES Neutrino Telescope, which is currently being constructed in the Mediterranean Sea, will be equipped with the infrastructure to accommodate a 3-dimensional array of photomultipliers for the detection of Cherenkov light. Within this infrastructure, the required resources for acoustic sensors are available: Bandwidth for the transmission of the acoustic data to the shore, electrical power for the off-shore electronics and physical space to install the acoustic sensors and to route the connecting cables (transmitting signals and power) into the electronics containers. It will be explained how the integration will be performed with minimal modifications of the existing ANTARES design and which setup is foreseen for the acquisition of the acoustic data.Comment: 5 pages, 1 figure, to appear in the proceedings of the 1st International ARENA Workshop, May 17-19th, 2005, DESY Zeuthen (Germany

    Development of Acoustic Sensors for the ANTARES Experiment

    Full text link
    In order to study the possibility of acoustic detection of ultra-high energy neutrinos in water, our group is planning to deploy and operate an array of acoustic sensors using the ANTARES Neutrino telescope in the Mediterranean Sea. Therefore, acoustic sensor hardware has to be developed which is both capable of operation under the hostile conditions of the deep sea and at the same time provides the high sensitivity necessary to detect the weak pressure signals resulting from the neutrino's interaction in water. In this paper, two different approaches to building such sensors, as well as performance studies in the laboratory and in situ, are presented.Comment: 5 pages, 3 figures. Proceedings of the ARENA 2005 Worksho

    Testing Thermo-acoustic Sound Generation in Water with Proton and Laser Beams

    Full text link
    Experiments were performed at a proton accelerator and an infrared laser acility to investigate the sound generation caused by the energy deposition of pulsed particle and laser beams in water. The beams with an energy range of 1 PeV to 400 PeV per proton beam spill and up to 10 EeV for the laser pulse were dumped into a water volume and the resulting acoustic signals were recorded with pressure sensitive sensors. Measurements were performed at varying pulse energies, sensor positions, beam diameters and temperatures. The data is well described by simulations based on the thermo-acoustic model. This implies that the primary mechanism for sound generation by the energy deposition of particles propagating in water is the local heating of the media giving rise to an expansion or contraction of the medium resulting in a pressure pulse with bipolar shape. A possible application of this effect would be the acoustical detection of neutrinos with energies greater than 1 EeV.Comment: 5 pages, 2 figures, to appear in the proceedings of the 1st International ARENA Workshop, May 17-19th, 2005, DESY Zeuthe
    • 

    corecore