464 research outputs found

    Uzbuda autoionizacijskog stanja u Na udarom elektrona

    Get PDF
    Electron-impact integral cross sections for the excitation of the lowest lying autoionizing level generated by the inner-shell 1s2 2s2 2p6 3s 2S e → 1s2 2s2 2p5 3s2 2P 0 complex transition in sodium (Na) atomic system have been calculated. In the calculation, single-configuration Hartree-Fock (HF) wave functions for both initial and final states involved in the transition matrix element within the asymptotic Green function approximation (AGFA) proposed by Tiwary (1981) were employed. The calculation was done exactly in the same way as in the earlier work in the case of the lightest alkali-metal atom lithium (Tiwary (1985), Tiwary, Macek and Madison (1985)) and the heaviest alkali-metal atom caesium (Tiwary (1983)) in the bombarding energy range from the threshold to 1500 eV. For the first time, Tiwary (1983) predicted the resonance behaviour in near vicinity of the excitation threshold in Cs using AGFA. Feuerstein et al. (1998) performed the experiment and observed resonance behaviour in the neighbourhood of excitation threshold in Na. Comparison has been made with available relevant experimental observations and other theoretical predictions. Our present AGFA theoretical result is qualitatively in accord with the experimental results.Izračunali smo integralne udarne presjeke za uzbudu najnižeg autoionizacijskog stanja koje nastaje udarom elektrona te putem kompleksnog prijelaza 1s2 2s2 2p6 3s 2S e Q 1s2 2s2 2p5 3s2 2P 0 među unutarnjim ljuskama u atomima natrija. U računu smo primijenili jedno-konfiguracijske Hartree-Fockove (HF) valne funkcije za odnosna početna i konačna stanja u matričnom elementu unutar asimptotskog približenja za Greenove funkcije (AGFA), predloženog Tiwary-em (1981). Račun je proveden točno na način kao u ranijem radu za najlakši alkalijski metalni atom litij (Tiwary (1985), Tiwary, Macek and Madison (1985)) i najteži alkalijski metalni atom cezij (Tiwary (1983)), za energije elektrona od praga do 1500 eV. Tiwary (1983) je prvi predvidio rezonanciju blizu iznad uzbudnog praga u Cs primjenom AGFA-e. Feuerstein et al. (1998) izveli su mjerenja i vidjeli rezonanciju u blizini uzbudnog praga u Na. Načinili smo usporedbu poznatih eksperimentalnih podataka i drugih teorijskih predviđanja. Naši su sadašnji teorijski rezultati u skladu s eksperimentalnima

    Uzbuda autoionizacijskog stanja u Na udarom elektrona

    Get PDF
    Electron-impact integral cross sections for the excitation of the lowest lying autoionizing level generated by the inner-shell 1s2 2s2 2p6 3s 2S e → 1s2 2s2 2p5 3s2 2P 0 complex transition in sodium (Na) atomic system have been calculated. In the calculation, single-configuration Hartree-Fock (HF) wave functions for both initial and final states involved in the transition matrix element within the asymptotic Green function approximation (AGFA) proposed by Tiwary (1981) were employed. The calculation was done exactly in the same way as in the earlier work in the case of the lightest alkali-metal atom lithium (Tiwary (1985), Tiwary, Macek and Madison (1985)) and the heaviest alkali-metal atom caesium (Tiwary (1983)) in the bombarding energy range from the threshold to 1500 eV. For the first time, Tiwary (1983) predicted the resonance behaviour in near vicinity of the excitation threshold in Cs using AGFA. Feuerstein et al. (1998) performed the experiment and observed resonance behaviour in the neighbourhood of excitation threshold in Na. Comparison has been made with available relevant experimental observations and other theoretical predictions. Our present AGFA theoretical result is qualitatively in accord with the experimental results.Izračunali smo integralne udarne presjeke za uzbudu najnižeg autoionizacijskog stanja koje nastaje udarom elektrona te putem kompleksnog prijelaza 1s2 2s2 2p6 3s 2S e Q 1s2 2s2 2p5 3s2 2P 0 među unutarnjim ljuskama u atomima natrija. U računu smo primijenili jedno-konfiguracijske Hartree-Fockove (HF) valne funkcije za odnosna početna i konačna stanja u matričnom elementu unutar asimptotskog približenja za Greenove funkcije (AGFA), predloženog Tiwary-em (1981). Račun je proveden točno na način kao u ranijem radu za najlakši alkalijski metalni atom litij (Tiwary (1985), Tiwary, Macek and Madison (1985)) i najteži alkalijski metalni atom cezij (Tiwary (1983)), za energije elektrona od praga do 1500 eV. Tiwary (1983) je prvi predvidio rezonanciju blizu iznad uzbudnog praga u Cs primjenom AGFA-e. Feuerstein et al. (1998) izveli su mjerenja i vidjeli rezonanciju u blizini uzbudnog praga u Na. Načinili smo usporedbu poznatih eksperimentalnih podataka i drugih teorijskih predviđanja. Naši su sadašnji teorijski rezultati u skladu s eksperimentalnima

    Synthesis, crystal structure and magnetic properties of a polymeric copper(II) schiff-base complex having binuclear units covalently linked by isonicotinate ligands

    Get PDF
    The polynuclear copper(II) complex [{Cu2L(O2CC5H4N)}·C2H5OH]x (1), where H3L is a 1:2 Schiff base derived from 1,3-diaminopropan-2-ol and salicylaldehyde, has been prepared and structurally characterized. The structure consists of a one-dimensional zigzag chain in which the binuclear [Cu2L]+ units are covalently linked by isonicotinate ligands to give a syndiotactic arrangement of the copper ions protruding outside the chain. In the basic unit, the copper(II) centres are bridged by an alkoxo and a carboxylato ligand, giving a Cu···Cu distance of 3.492(3) Å and a Cu-O-Cu angle of 130.9(2)° . While one copper centre has a square-planar geometry, the other copper is squarepyramidal with the pyridine nitrogen being the axial ligand. The visible electronic spectrum of 1 shows a broad d-d band at 615 nm. The complex shows a rhombic X-band EPR spectral pattern in the polycrystalline phase at 77 K. Magnetic susceptibility measurements in the temperature range 22 to 295 K demonstrate the antiferromagnetic behaviour of 1. A theoretical fit to the magnetic data is based on a model assuming 1 as an equimolar mixture of copper atoms belonging to an antiferromagnetically coupled one-dimensional Heisenberg chain with the other copper atoms outside the chain behaving like paramagnetic centres

    Understanding the evolution of catalytically active multi-metal sites in a bifunctional high-entropy alloy electrocatalyst for zinc–air battery application

    Get PDF
    Zinc–air batteries are known for high theoretical energy density and environmental friendliness. The successful commercial utilization of rechargeable zinc–air batteries is limited by unstable electrochemical interfaces and sluggish kinetics with poor round-trip efficiency. In this study, we report a nanocrystalline high entropy alloy (HEA) comprising Cu–Co–Mn–Ni–Fe (CCMNF) prepared by casting-cum-cryomilling method. This multi-component HEA embodies multiple catalytically active sites with diverse functionalities, thus enhancing the electrochemical redox reactions, e.g., oxygen reduction (ORR) and oxygen evolution reaction (OER). The bifunctional electrocatalytic performance of this HEA is comparable to that of standard catalysts, RuO2 and Pt/C, as evidenced by low overpotential requirements towards OER and ORR. The HEA was tested for use in the air electrode catalyst in the zinc–air battery, where it performed stable oxygen electrocatalysis that was durable over 1045 charging–discharging cycles for ∼90 hours of continuous operation. The microstructural analysis of HEA at different time scales (0, 24, 87 h) during the zinc–air battery operation suggested a dynamic participation of multiple metal active sites on the catalyst surface. Detailed studies revealed that despite leaching in harsh alkaline operation conditions, the synergistic electronic interactions between the component metal sites sustained good electrocatalytic performance and promoted oxygen electrocatalysis through the modification of electronic and chemical properties

    High-Entropy Alloys as Catalysts for the CO2 and CO Reduction Reactions: Experimental Realization

    Get PDF
    Conversion of carbon dioxide into selective hydrocarbon using a stable catalyst remains a holy grail in the catalysis community. The high overpotential, stability, and selectivity in the use of a single-metal-based catalyst still remain a challenge. In current work, instead of using pure noble metals (Ag, Au, and Pt) as the catalyst, a nanocrystalline high-entropy alloy (HEA: AuAgPtPdCu) has been used for the conversion of CO2 into gaseous hydrocarbons. Utilizing an approach of multimetallic HEA, a faradic efficiency of about 100% toward gaseous products is obtained at a low applied potential (−0.3 V vs reversible hydrogen electrode). The reason behind the catalytic activity and selectivity of the high-entropy alloy (HEA) toward CO2 electroreduction was established through first-principles-based density functional theory (DFT) by comparing it with the pristine Cu(111) surface. This is attributed to the reversal in adsorption trends for two out of the total eight intermediates—*OCH3 and *O on Cu(111) and HEA surfaces

    Targeting cholesterol-rich microdomains to circumvent tamoxifen-resistant breast cancer

    Get PDF
    Adjuvant treatment with tamoxifen substantially improves survival of women with estrogen-receptor positive (ER+) tumors. Tamoxifen resistance (TAMR) limits clinical benefit. RRR alpha tocopherol ether-linked acetic acid analogue (alpha-TEA) is a small bioactive lipid with potent anticancer activity. We evaluated the ability of alpha-TEA in the presence of tamoxifen to circumvent TAMR in human breast cancer cell lines. Methods: Two genotypically matched sets of TAM-sensitive (TAMS) and TAM-resistant (TAMR) human breast cancer cell lines were assessed for signal-transduction events with Western blotting, apoptosis induction with Annexin V-FITC/PI assays, and characterization of cholesterol-rich microdomains with fluorescence staining. Critical involvement of selected mediators was determined by using RNA interference and chemical inhibitors. Results: Growth-factor receptors (total and phosphorylated forms of HER-1 and HER-2), their downstream prosurvival mediators pAkt, pmTOR, and pERK1/2, phosphorylated form of estrogen receptor-alpha (pER-alpha at Ser-167 and Ser-118, and cholesterol-rich lipid microdomains were highly amplified in TAMR cell lines and enhanced by treatment with TAM. alpha-TEA disrupted cholesterol-rich microdomains, acted cooperatively with TAM to reduce prosurvival mediators, and induced DR5-mediated mitochondria-dependent apoptosis via an endoplasmic reticulum stress-triggered pro-death pJNK/CHOP/DR5 amplification loop. Furthermore, methyl-beta-cyclodextrin (M beta CD), a chemical disruptor of cholesterol rich microdomains, acted cooperatively with TAM to reduce prosurvival mediators and to induce apoptosis. Conclusions: Data for the first time document that targeting cholesterol-rich lipid microdomains is a potential strategy to circumvent TAMR, and the combination of alpha-TEA + TAM can circumvent TAMR by suppression of prosurvival signaling via disruption of cholesterol-rich lipid microdomains and activation of apoptotic pathways via induction of endoplasmic reticulum stress.Clayton Foundation for ResearchCenter for Molecular and Cellular Toxicology at the University of TexasNIEHS/NIH T32 ES07247Nutritional Science

    Interference effects in the photorecombination of argonlike Sc3+ ions: Storage-ring experiment and theory

    Full text link
    Absolute total electron-ion recombination rate coefficients of argonlike Sc3+(3s2 3p6) ions have been measured for relative energies between electrons and ions ranging from 0 to 45 eV. This energy range comprises all dielectronic recombination resonances attached to 3p -> 3d and 3p -> 4s excitations. A broad resonance with an experimental width of 0.89 +- 0.07 eV due to the 3p5 3d2 2F intermediate state is found at 12.31 +- 0.03 eV with a small experimental evidence for an asymmetric line shape. From R-Matrix and perturbative calculations we infer that the asymmetric line shape may not only be due to quantum mechanical interference between direct and resonant recombination channels as predicted by Gorczyca et al. [Phys. Rev. A 56, 4742 (1997)], but may partly also be due to the interaction with an adjacent overlapping DR resonance of the same symmetry. The overall agreement between theory and experiment is poor. Differences between our experimental and our theoretical resonance positions are as large as 1.4 eV. This illustrates the difficulty to accurately describe the structure of an atomic system with an open 3d-shell with state-of-the-art theoretical methods. Furthermore, we find that a relativistic theoretical treatment of the system under study is mandatory since the existence of experimentally observed strong 3p5 3d2 2D and 3p5 3d 4s 2D resonances can only be explained when calculations beyond LS-coupling are carried out.Comment: 11 pages, 7 figures, 3 tables, Phys. Rev. A (in print), see also: http://www.strz.uni-giessen.de/~k

    Soils of India: historical perspective, classification and recent advances

    Get PDF
    Derived from a wide range of rocks and minerals, a large variety of soils occur in the Indian subcontinent. Soil-forming factors like climate, vegetation and topography acting for varying periods on a range of rock formations and parent materials, have given rise to different kinds of soil. The National Bureau of Soil Survey and Land Use Planning, Nagpur has developed a database on soils with field and laboratory studies over the last 30 years. This has generated maps and soil information at different scales, showing area and distribution of various soil groups in different agroecological subregions. The 1 : 250,000 scale map shows a threshold soil variation index of 4–5 and 10–25 soil families per m ha for alluvial plains and black soil regions respectively. Progress in basic and fundamental research in Indian soils has been reviewed in terms of soils, their formation related to climate, relief, organisms, parent materials and time
    corecore