100 research outputs found

    Weaning of Moderately Preterm Infants from the Incubator to the Crib: A Randomized Clinical Trial

    Get PDF
    OBJECTIVE: To assess whether length of hospital stay is decreased among moderately preterm infants weaned from incubator to crib at a lower vs higher weight. STUDY DESIGN: This trial was conducted in the Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. Infants with gestational ages 29-33 weeks, birthweight <1600 g, and in an incubator were randomly assigned to a weaning weight of 1600 or 1800 g. Within 60 to 100 g of weaning weight, the incubator temperature was decreased by 1.0°C to 1.5°C every 24 hours until 28.0°C. The infants were weaned to the crib following stable temperature at 36.5°C to 37.4°C for 8 to 12 hours. Clothing and bedcoverings were standardized. The primary outcome was length of hospital stay from birth to discharge; secondary outcomes included length of stay and growth velocity from weaning to discharge. Adverse events were monitored. RESULTS: Of 1565 infants screened, 885 were eligible, and 366 enrolled-187 to the 1600-g and 179 to the 1800-g group. Maternal and neonatal characteristics did not differ among weight groups. Length of hospital stay was a median of 43 days in the lower and 41 days in the higher weight group (P = .12). Growth velocity from completion of weaning to discharge was higher in the lower weight group, 13.7 g/kg/day vs 12.8 g/kg/day (P = .005). Groups did not differ in adverse events. CONCLUSIONS: Among moderately preterm neonates, weaning from incubator to crib at a lower weight did not decrease length of stay, but was safe and was accompanied by higher weight gain after weaning

    Higher or Lower Hemoglobin Transfusion Thresholds for Preterm Infants

    Get PDF
    Background: Limited data suggest that higher hemoglobin thresholds for red-cell transfusions may reduce the risk of cognitive delay among extremely-low-birth-weight infants with anemia. Methods: We performed an open, multicenter trial in which infants with a birth weight of 1000 g or less and a gestational age between 22 weeks 0 days and 28 weeks 6 days were randomly assigned within 48 hours after delivery to receive red-cell transfusions at higher or lower hemoglobin thresholds until 36 weeks of postmenstrual age or discharge, whichever occurred first. The primary outcome was a composite of death or neurodevelopmental impairment (cognitive delay, cerebral palsy, or hearing or vision loss) at 22 to 26 months of age, corrected for prematurity. Results: A total of 1824 infants (mean birth weight, 756 g; mean gestational age, 25.9 weeks) underwent randomization. There was a between-group difference of 1.9 g per deciliter (19 g per liter) in the pretransfusion mean hemoglobin levels throughout the treatment period. Primary outcome data were available for 1692 infants (92.8%). Of 845 infants in the higher-threshold group, 423 (50.1%) died or survived with neurodevelopmental impairment, as compared with 422 of 847 infants (49.8%) in the lower-threshold group (relative risk adjusted for birth-weight stratum and center, 1.00; 95% confidence interval [CI], 0.92 to 1.10; P = 0.93). At 2 years, the higher- and lower-threshold groups had similar incidences of death (16.2% and 15.0%, respectively) and neurodevelopmental impairment (39.6% and 40.3%, respectively). At discharge from the hospital, the incidences of survival without severe complications were 28.5% and 30.9%, respectively. Serious adverse events occurred in 22.7% and 21.7%, respectively. Conclusions: In extremely-low-birth-weight infants, a higher hemoglobin threshold for red-cell transfusion did not improve survival without neurodevelopmental impairment at 22 to 26 months of age, corrected for prematurity

    Update on Erythropoiesis-Stimulating Agents Administered to Neonates for Neuroprotection.

    No full text
    Erythropoiesis-stimulating agents (ESAs) such as erythropoietin and darbepoetin have been studied as red blood cell growth factors in preterm and term infants for more than 30 years. Recently, studies have focused on the potential neuroprotective effects of ESAs. In this review, we summarize preclinical animal models and recent clinical trials that provide evidence for ESAs as potential treatments to improve neurodevelopmental outcomes in preterm and term infants

    Epsilon globin gene expression in developing human fetal tissues.

    No full text
    OBJECTIVE: The discovery of free fetal DNA in plasma of pregnant women has opened a new avenue for non-invasive prenatal diagnosis. We hypothesized that epsilon (É›)-globin gene expression could serve as a positive control for the presence of fetal nucleic acid. STUDY DESIGN: We measured É›-globin mRNA in human fetal tissues and compared concentrations with that measured in adult non-pregnant and pregnant samples. Total RNA was isolated from fetal marrow, liver, blood, and placenta (10-24 weeks gestation), from adult peripheral blood mononuclear cells, and from maternal plasma. RNA was reverse transcribed and quantitative polymerase chain reaction performed for É›-globin expression. RESULTS: É›-globin gene expression was detected in all fetal samples, was detected in plasma of pregnant women, but was negligible in non-pregnant samples. Relative É›-globin gene expression was significantly greater in fetal blood compared to fetal liver, and was minimally expressed in placenta. É›-globin gene expression decreased at the highest gestational ages in fetal blood, while expression was greatest at 15-19 weeks in fetal marrow. CONCLUSION: Fetal É›-globin gene expression is significantly greater than adult expression and is increased in maternal plasma compared to non-pregnant samples. É›-globin gene expression might serve as a positive control when determining the presence of fetal nucleic acid in total nucleic acid isolated from maternal plasma

    Cognitive development in preterm infants: multifaceted deficits reflect vulnerability of rigorous neurodevelopmental pathways.

    No full text
    Prematurity remains the major cause of neonatal morbidity and mortality, with 15 million preterm births occurring worldwide in 2010. Infants born less than 37 weeks gestation are at high risk of abnormal neurodevelopmental outcomes, given that the central nervous system is extremely sensitive to an abnormal intra- and extra-uterine environment. Children born preterm have multiple neurodevelopmental sequelae involving dynamic and complex cognitive deficits. Former preterm infants have difficulty with each domain of cognition, including executive function, language, learning and memory, complex attention, perceptual-motor function and social cognition when compared to children born at term. Although deficits are not always severe, even mild delays can be impactful, resulting in a spectrum of outcomes from difficulties in school to an inability to lead an independent adult life. Here, we review current literature on the cognitive outcomes of infants born preterm with a focus on how specific disruption in crucial neurodevelopmental pathways render these children vulnerable to dynamic deficits in cognition as they mature. Further, we highlight promising therapies and intervention strategies aimed at mitigating these deficits, including the use of erythropoietin. With an increasing number of preterm infants surviving, understanding developmental deficits will allow therapies to be developed and optimized, in order to ensure the best outcome for this vulnerable patient population

    Comparison of cerebral volume in children aged 18-22 and 36-47 months born preterm and term.

    No full text
    Studies investigating differences in regional brain volumes in children born preterm and term during early childhood are limited. Neuroimaging could help understand patterns of deficit in children born preterm and target areas of development associated with these regions. The goal of this study was to identify differences in regional brain volume at 2 different ages using magnetic resonance imaging in preterm and term children. Magnetic resonance imaging and developmental testing occurred in children 18 to 22 months old (16 preterm and 10 term children) and 36 to 47 month old (12 preterm and 10 term children). There were significant differences between the 4 groups in the parietal region, cerebral white matter, third ventricle, and lateral ventricle. Correlations between regional cerebral volume and developmental testing were explored for the third and lateral ventricles. Our findings indicate that in young children differences in regional cerebral volume are due to both maturation and prematurity
    • …
    corecore