8,647 research outputs found

    Measurement of point velocities in turbulent liquid flow

    Get PDF
    Turbulent water flow velocity distribution using hot-wire anemometer and photographic technique

    The Minimum Wiener Connector

    Full text link
    The Wiener index of a graph is the sum of all pairwise shortest-path distances between its vertices. In this paper we study the novel problem of finding a minimum Wiener connector: given a connected graph G=(V,E)G=(V,E) and a set QVQ\subseteq V of query vertices, find a subgraph of GG that connects all query vertices and has minimum Wiener index. We show that The Minimum Wiener Connector admits a polynomial-time (albeit impractical) exact algorithm for the special case where the number of query vertices is bounded. We show that in general the problem is NP-hard, and has no PTAS unless P=NP\mathbf{P} = \mathbf{NP}. Our main contribution is a constant-factor approximation algorithm running in time O~(QE)\widetilde{O}(|Q||E|). A thorough experimentation on a large variety of real-world graphs confirms that our method returns smaller and denser solutions than other methods, and does so by adding to the query set QQ a small number of important vertices (i.e., vertices with high centrality).Comment: Published in Proceedings of the 2015 ACM SIGMOD International Conference on Management of Dat

    Wakefield damping for the CLIC crab cavity

    Get PDF
    A crab cavity is required in the CLIC to allow effective head-on collision of bunches at the IP. A high operating frequency is preferred as the deflection voltage required for a given rotation angle and the RF phase tolerance for a crab cavity are inversely proportional to the operating frequency. The short bunch spacing of the CLIC scheme and the high sensitivity of the crab cavity to dipole kicks demand very high damping of the inter-bunch wakes, the major contributor to the luminosity loss of colliding bunches. This paper investigates the nature of the wakefields in the CLIC crab cavity and the possibility of using various damping schemes to suppress them effectively

    Population inversion in optically pumped asymmetric quantum well terahertz lasers

    Get PDF
    Intersubband carrier lifetimes and population ratios are calculated for three- and four-level optically pumped terahertz laser structures. Laser operation is based on intersubband transitions between the conduction band states of asymmetric GaAs-Ga(1 – x)Al(x)As quantum wells. It is shown that the carrier lifetimes in three-level systems fulfill the necessary conditions for stimulated emission only at temperatures below 200 K. The addition of a fourth level, however, enables fast depopulation of the lower laser level by resonant longitudinal optical phonon emission and thus offers potential for room temperature laser operation. © 1997 American Institute of Physics

    Demand side participation for frequency containment in the web of cells architecture

    Get PDF
    A large number of demand side management schemes have been proposed in literature for provision of frequency control ancillary services to the network. However, it is assumed that all the flexible devices within the network are managed and controlled under one demand side management (DSM) scheme. In this paper, two independent demand side management schemes control the portfolio of flexible devices within a web of cells architecture. A methodology and scenarios for analysis of the performance of more than one DSM scheme within the same network have been realized using a real-time power hardware-in-the-loop co-simulation platform, and the paper presents this as a basis for investigations of such arrangements

    Invariant Homology on Standard Model Manifolds

    Full text link
    Torus-fibered Calabi-Yau threefolds Z, with base dP_9 and fundamental group pi_1(Z)=Z_2 X Z_2, are reviewed. It is shown that Z=X/(Z_2 X Z_2), where X=B X_{P_1} B' are elliptically fibered Calabi-Yau threefolds that admit a freely acting Z_2 X Z_2 automorphism group. B and B' are rational elliptic surfaces, each with a Z_2 X Z_2 group of automorphisms. It is shown that the Z_2 X Z_2 invariant classes of curves of each surface have four generators which produce, via the fiber product, seven Z_2 X Z_2 invariant generators in H_4(X,Z). All invariant homology classes are computed explicitly. These descend to produce a rank seven homology group H_4(Z,Z) on Z. The existence of these homology classes on Z is essential to the construction of anomaly free, three family standard-like models with suppressed nucleon decay in both weakly and strongly coupled heterotic superstring theory.Comment: 57 pages, 13 figure

    Torus-Fibered Calabi-Yau Threefolds with Non-Trivial Fundamental Group

    Get PDF
    We construct smooth Calabi-Yau threefolds Z, torus-fibered over a dP_9 base, with fundamental group Z_2 X Z_2. To do this, the structure of rational elliptic surfaces is studied and it is shown that a restricted subset of such surfaces admit at least a Z_2 X Z_2 group of automorphisms. One then constructs Calabi-Yau threefolds X as the fiber product of two such dP_9 surfaces, demonstrating that the involutions on the surfaces lift to a freely acting Z_2 X Z_2 group of automorphisms on X. The threefolds Z are then obtained as the quotient Z=X/(Z_2 X Z_2). These Calabi-Yau spaces Z admit stable, holomorphic SU(4) vector bundles which, in conjunction with Z_2 X Z_2 Wilson lines, lead to standard-like models of particle physics with naturally suppressed nucleon decay.Comment: 60 pages, 13 figures, Typos correcte

    A bio-inspired image coder with temporal scalability

    Full text link
    We present a novel bio-inspired and dynamic coding scheme for static images. Our coder aims at reproducing the main steps of the visual stimulus processing in the mammalian retina taking into account its time behavior. The main novelty of this work is to show how to exploit the time behavior of the retina cells to ensure, in a simple way, scalability and bit allocation. To do so, our main source of inspiration will be the biologically plausible retina model called Virtual Retina. Following a similar structure, our model has two stages. The first stage is an image transform which is performed by the outer layers in the retina. Here it is modelled by filtering the image with a bank of difference of Gaussians with time-delays. The second stage is a time-dependent analog-to-digital conversion which is performed by the inner layers in the retina. Thanks to its conception, our coder enables scalability and bit allocation across time. Also, our decoded images do not show annoying artefacts such as ringing and block effects. As a whole, this article shows how to capture the main properties of a biological system, here the retina, in order to design a new efficient coder.Comment: 12 pages; Advanced Concepts for Intelligent Vision Systems (ACIVS 2011

    Knots, Braids and BPS States in M-Theory

    Get PDF
    In previous work we considered M-theory five branes wrapped on elliptic Calabi-Yau threefold near the smooth part of the discriminant curve. In this paper, we extend that work to compute the light states on the worldvolume of five-branes wrapped on fibers near certain singular loci of the discriminant. We regulate the singular behavior near these loci by deforming the discriminant curve and expressing the singularity in terms of knots and their associated braids. There braids allow us to compute the appropriate string junction lattice for the singularity and,hence to determine the spectrum of light BPS states. We find that these techniques are valid near singular points with N=2 supersymmetry.Comment: 38 page
    corecore