100 research outputs found

    Integrated photo-responsive metal oxide semiconductor circuit

    Get PDF
    An infrared photoresponsive element (RD) is monolithically integrated into a source follower circuit of a metal oxide semiconductor device by depositing a layer of a lead chalcogenide as a photoresistive element forming an ohmic bridge between two metallization strips serving as electrodes of the circuit. Voltage from the circuit varies in response to illumination of the layer by infrared radiation

    Performance of the QWIP Focal Plane Arrays for NASA's Landsat Data Continuity Mission

    Get PDF
    The focal plane assembly for the Thermal Infrared Sensor (TIRS) instrument on NASA's Landsat Data Continuity Mission (LDCM) consists of three 512 x 640 GaAs Quantum Well Infrared Photodetector (QWIP) arrays. The three arrays are precisely mounted and aligned on a silicon carrier substrate to provide a continuous viewing swath of 1850 pixels in two spectral bands defined by filters placed in close proximity to the detector surfaces. The QWIP arrays are hybridized to Indigo ISC9803 readout integrated circuits (ROICs). QWIP arrays were evaluated from four laboratories; QmagiQ, (Nashua, NH), Army Research Laboratory, (Adelphi, MD}, NASA/ Goddard Space Flight Center, (Greenbelt, MD) and Thales, (Palaiseau, France). All were found to be suitable. The final discriminating parameter was the spectral uniformity of individual pixels relative to each other. The performance of the QWIP arrays and the fully assembled, NASA flight-qualified, focal plane assembly will be reviewed. An overview of the focal plane assembly including the construction and test requirements of the focal plane will also be described

    The Primordial Inflation Polarization Explorer (PIPER)

    Get PDF
    The Primordial Inflation Polarization Explorer (PIPER) is a balloon-borne cosmic microwave background (CMB) polarimeter designed to search for evidence of inflation by measuring the large-angular scale CMB polarization signal. BICEP2 recently reported a detection of B-mode power corresponding to the tensor-to-scalar ratio r = 0.2 on ~2 degree scales. If the BICEP2 signal is caused by inflationary gravitational waves (IGWs), then there should be a corresponding increase in B-mode power on angular scales larger than 18 degrees. PIPER is currently the only suborbital instrument capable of fully testing and extending the BICEP2 results by measuring the B-mode power spectrum on angular scales θ\theta = ~0.6 deg to 90 deg, covering both the reionization bump and recombination peak, with sensitivity to measure the tensor-to-scalar ratio down to r = 0.007, and four frequency bands to distinguish foregrounds. PIPER will accomplish this by mapping 85% of the sky in four frequency bands (200, 270, 350, 600 GHz) over a series of 8 conventional balloon flights from the northern and southern hemispheres. The instrument has background-limited sensitivity provided by fully cryogenic (1.5 K) optics focusing the sky signal onto four 32x40-pixel arrays of time-domain multiplexed Transition-Edge Sensor (TES) bolometers held at 140 mK. Polarization sensitivity and systematic control are provided by front-end Variable-delay Polarization Modulators (VPMs), which rapidly modulate only the polarized sky signal at 3 Hz and allow PIPER to instantaneously measure the full Stokes vector (I, Q, U, V) for each pointing. We describe the PIPER instrument and progress towards its first flight.Comment: 11 pages, 7 figures. To be published in Proceedings of SPIE Volume 9153. Presented at SPIE Astronomical Telescopes + Instrumentation 2014, conference 915

    The Radio - 2 mm Spectral Index of the Crab Nebula Measured with GISMO

    Full text link
    We present results of 2 mm observations of the Crab Nebula, obtained using the Goddard-IRAM Superconducting 2 Millimeter Observer (GISMO) bolometer camera on the IRAM 30 m telescope. Additional 3.3 mm observations with the MUSTANG bolometer array on the Green Bank Telescope are also presented. The integrated 2 mm flux density of the Crab Nebula provides no evidence for the emergence of a second synchrotron component that has been proposed. It is consistent with the radio power law spectrum, extrapolated up to a break frequency of log(nu_{b} [GHz]) = 2.84 +/- 0.29 or nu_{b} = 695^{+651}_{-336} GHz. The Crab Nebula is well-resolved by the ~16.7" beam (FWHM) of GISMO. Comparison to radio data at comparable spatial resolution enables us to confirm significant spatial variation of the spectral index between 21 cm and 2 mm. The main effect is a spectral flattening in the inner region of the Crab Nebula, correlated with the toroidal structure at the center of the nebula that is prominent in the near-IR through X-ray regime.Comment: Accepted for publication in the Ap

    Two bolometer arrays for far-infrared and submillimeter astronomy

    Get PDF
    We describe the development, construction, and testing of two 384 element arrays of ion-implanted semiconducting cryogenic bolometers designed for use in far-infrared and submillimeter cameras. These two dimensional arrays are assembled from a number of 32 element linear arrays of monolithic Pop-Up bolometer Detectors (PUD) developed at NASA/Goddard Space Flight Center. PUD technology allows the construction of large, high filling factor, arrays that make efficient use of available focal plane area in far-infrared and submillimeter astronomical instruments. Such arrays can be used to provide a significant increase in mapping speed over smaller arrays. A prototype array has been delivered and integrated into a ground-based camera, the Submillimeter High Angular Resolution Camera (SHARC II), a facility instrument at the Caltech Submillimeter Observatory (CSO). A second array has recently been delivered for integration into the High-resolution Airborne Widebandwidth Camera (HAWC), a far-infrared imaging camera for the Stratospheric Observatory for Infrared Astronomy (SOFIA). HAWC is scheduled for commissioning in 2005

    Performance of the QWIP Focal Plane Array for NASA's Landsat 9 Mission

    Get PDF
    The flight focal plane array (FPA) for the Thermal Infrared Sensor 2 (TIRS-2) instrument, to be flown on Landsat 9, was built and characterized at NASA Goddard Space Flight Center (GSFC). The FPA was assembled using GaAs quantum well infrared photodetector (QWIP) arrays from the same lot as the TIRS instrument on Landsat 8. Each QWIP array is hybridized to an Indigo ISC9803 readout integrated circuit (ROIC) with 640 x 512, 25m by 25m pixels. Each QWIP hybrid was tested at the NASA/GSFC Detector Characterization Laboratory (DCL) as a single sensor chip assembly (SCA). The best SCAs in terms of performance were then built up into an FPA consisting of three SCAs, required to provide the necessary 15-degree field of view of the instrument. The FPA was tested to determine if project requirements were being met as a fully assembled unit. The performance of the QWIP SCAs and the fully assembled, NASA flight-qualified FPA will be reviewed

    The Infrared Array Camera (IRAC) for the Spitzer Space Telescope

    Full text link
    The Infrared Array Camera (IRAC) is one of three focal plane instruments in the Spitzer Space Telescope. IRAC is a four-channel camera that obtains simultaneous broad-band images at 3.6, 4.5, 5.8, and 8.0 microns. Two nearly adjacent 5.2x5.2 arcmin fields of view in the focal plane are viewed by the four channels in pairs (3.6 and 5.8 microns; 4.5 and 8 microns). All four detector arrays in the camera are 256x256 pixels in size, with the two shorter wavelength channels using InSb and the two longer wavelength channels using Si:As IBC detectors. IRAC is a powerful survey instrument because of its high sensitivity, large field of view, and four-color imaging. This paper summarizes the in-flight scientific, technical, and operational performance of IRAC.Comment: 7 pages, 3 figures. Accepted for publication in the ApJS. A higher resolution version is at http://cfa-www.harvard.edu/irac/publication

    Design and Status of the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): An Interferometer at the Edge of Space

    Get PDF
    The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-meter baseline far-infraredinterferometer designed to fly on a high altitude balloon. BETTII uses a double-Fourier Michelson interferometer tosimultaneously obtain spatial and spectral information on science targets; the long baseline permits subarcsecond angular resolution, a capability unmatched by other far-infrared facilities. Here, we present key aspects of the overall design of the mission and provide an overview of the current status of the project. We also discuss briefly the implications of this experiment for future space-based far-infrared interferometers

    Snowballs in Euclid and WFIRST Detectors

    Get PDF
    Snowballs are transient events observed in HgCdTe detectors with a sudden increase of charge in a few pixels. They appear between consecutive reads of the detector, after which the affected pixels return to their normal behavior. The origin of the snowballs is unknown, but it was speculated that they could be the result of alpha decay of naturally radioactive contaminants in the detectors, but a cosmic ray origin cannot be ruled out. Even though previous studies predicted a low rate of occurrence of these events, and consequently, a minimal impact on science, it is interesting to investigate the cause or causes that may generate snowballs and their impact in detectors designed for future missions. We searched for the presence of snowballs in the dark current data in Euclid and Wide Field Infrared Survey Telescope (WFIRST) detectors tested in the Detector Characterization Laboratory at Goddard Space Flight Center. Our investigation shows that for Euclid and WFIRST detectors, there are snowballs that appear only one time, and others that repeat in the same spatial localization. For Euclid detectors, there is a correlation between the snowballs that repeat and bad pixels in the operational masks (pixels that do not fulfill the requirements to pass spectroscopy noise, photometry noise, quantum efficiency, and/or linearity). The rate of occurrence for a snowball event is about 0.9 snowballs/hr. in Euclid detectors (for the ones that do not have associated bad pixels in the mask), and about 0.7 snowballs/hr. in PV3 Full Array Lot WFIRST detectors

    The Primordial Inflation Polarization Explorer (PIPER): Current Status and Performance of the First Flight

    Get PDF
    The Primordial Inflation Polarization ExploreR (PIPER) is a balloon-borne instrument optimized to measure the polarization of the CMB at large angular scales. It will map 85% of the sky over a series of conventional balloon flights from the Northern and Southern hemispheres, measuring the B-mode polarization power spectrumover a range of multipoles from 2-300 covering both the reionization bump and the recombination peak, with sensitivity to measure the tensor-to-scalar ratio down to r = 0.007. PIPER will observe in four frequency bands centered at 200, 270, 350, and 600 GHz to characterize dust foregrounds. The instrument has background-limited sensitivity provided by fully cryogenic (1.7 K) optics focusing the sky signal onto kilo-pixel arrays of time-domain multiplexed Transition-Edge Sensor (TES) bolometers held at 100 mK. Polarization sensitivity and systematiccontrol are provided by front-end Variable-delay Polarization Modulators (VPMs). PIPER had its engineering flight in October 2017 from Fort Sumner, New Mexico. This papers outlines the major components in the PIPER system discussing the conceptual design as well as specific choices made for PIPER. We also report on the results of the engineering flight, looking at the functionality of the payload systems, particularly VPM, as well as pointing out areas of improvement
    corecore