1,590 research outputs found

    Non-linear spin to charge conversion in mesoscopic structures

    Get PDF
    Motivated by recent experiments [Vera-Marun et al., arXiv:1109.5969], we formulate a non-linear theory of spin transport in quantum coherent conductors. We show how a mesoscopic constriction with energy-dependent transmission can convert a spin current injected by a spin accumulation into an electric signal, relying neither on magnetic nor exchange fields. When the transmission through the constriction is spin-independent, the spin-charge coupling is non-linear, with an electric signal that is quadratic in the accumulation. We estimate that gated mesoscopic constrictions have a sensitivity that allows to detect accumulations much smaller than a percent of the Fermi energy.Comment: 4 pages, 3 figure

    Magnetic bipolar transistor

    Get PDF
    A magnetic bipolar transistor is a bipolar junction transistor with one or more magnetic regions, and/or with an externally injected nonequilibrium (source) spin. It is shown that electrical spin injection through the transistor is possible in the forward active regime. It is predicted that the current amplification of the transistor can be tuned by spin.Comment: 4 pages, 2 figure

    On discrete control problems having a minmax type objective functional

    Get PDF

    Joint measurement of complementary observables in moment tomography

    Full text link
    Wigner and Husimi quasi-distributions, owing to their functional regularity, give the two archetypal and equivalent representations of all observable-parameters in continuous-variable quantum information. Balanced homodyning and heterodyning that correspond to their associated sampling procedures, on the other hand, fare very differently concerning their state or parameter reconstruction accuracies. We present a general theory of a now-known fact that heterodyning can be tomographically more powerful than balanced homodyning to many interesting classes of single-mode quantum states, and discuss the treatment for two-mode sources.Comment: 15 pages, 4 figures, conference proceedings for Quantum 2017 in Torin

    Theory of Spin Relaxation in Two-Electron Lateral Coupled Si/SiGe Quantum Dots

    Get PDF
    Highly accurate numerical results of phonon-induced two-electron spin relaxation in silicon double quantum dots are presented. The relaxation, enabled by spin-orbit coupling and the nuclei of 29^{29}Si (natural or purified abundance), are investigated for experimentally relevant parameters, the interdot coupling, the magnetic field magnitude and orientation, and the detuning. We calculate relaxation rates for zero and finite temperatures (100 mK), concluding that our findings for zero temperature remain qualitatively valid also for 100 mK. We confirm the same anisotropic switch of the axis of prolonged spin lifetime with varying detuning as recently predicted in GaAs. Conditions for possibly hyperfine-dominated relaxation are much more stringent in Si than in GaAs. For experimentally relevant regimes, the spin-orbit coupling, although weak, is the dominant contribution, yielding anisotropic relaxation rates of at least two order of magnitude lower than in GaAs.Comment: 11 pages, 10 figure

    Minimal qubit tomography

    Full text link
    We present, and analyze thoroughly, a highly symmetric and efficient scheme for the determination of a single-qubit state, such as the polarization properties of photons emitted by a single-photon source. In our scheme there are only four measured probabilities, just enough for the determination of the three parameters that specify the qubit state, whereas the standard procedure would measure six probabilities.Comment: 14 pages, 10 figures; final versio

    Signatures of the non-Maxwellian κ\kappa-distributions in optically thin line spectra. II. Synthetic Fe XVII--XVIII X-ray coronal spectra and predictions for the Marshall Grazing-Incidence X-ray Spectrometer (MaGIXS)

    Full text link
    We investigated the possibility of diagnosing the degree of departure from the Maxwellian distribution using the Fe XVII - Fe XVIII spectra originating in plasmas in collisional ionization equilibrium, such as in the cores of solar active regions or microflares. The original collision strengths for excitation are integrated over the non-Maxwellian electron κ\kappa-distributions characterized by a high-energy tail. Synthetic X-ray emission line spectra were calculated for a range of temperatures and κ\kappa. We focus on the 6-24 A spectral range to be observed by the upcoming Marshall Grazing-Incidence X-ray Spectrometer MaGIXS. We find that many line intensity ratios are sensitive to both TT and κ\kappa. Best diagnostic options are provided if a ratio involving both Fe XVII and Fe XVIII is combined with another ratio involving lines formed within a single ion. The sensitivity of such diagnostics to κ\kappa is typically a few tens of per cent. Much larger sensitivity, of about a factor of two to three, can be obtained if the Fe XVIII 93.93 A line observed by SDO/AIA is used in conjuction with the X-ray lines. We conclude that the MaGIXS instrument is well-suited for detection of departures from the Maxwellian distribution, especially in active region cores.Comment: Astronomy & Astrophysics, accepte

    The Slavic Manuscripts in the Federal Republic of Germany

    Get PDF
    William R. Veder, Katholieke Universiteit, Nijmegen, Holland. No institutional affiliation is indicated for Heinz Miklas or Jaroslav N. Ščapov.This article, which appears under the section title of "ДѢЛО КЪНИЖЬНОѤ/Dielo k"nizh'noie" in Polata knigopisnaia 9, provides an inventory describing Slavic manuscripts in the Federal Republic of Germany.The inventory indicates the shelfmark, date, language, title, foliation, dimensions, and material (writing support) of the items where known, as well as references to publications about each item. Manuscripts are noted in the following cities: Bamberg, Berlin, Bonn, Erlangen, Göttingen, Hamburg, Hanover, Heidelberg, Karlsruhe, Limburgerhof, München, Bad Soden-Neuenhain, Stuttgart, Tübingen, Wolfenbüttel, Wertheim, Würzberg, and Freiberg. Languages represented include: Bulgarian, Croatian, Czech, French, German, Italian, Latin, Moldavian, Polabian, Polish, Russian, Serbian, and Lower Sorbian. The manuscripts range in date from the 10th to the 19th centuries. The list of references is on pages 52-58

    Spin-orbit coupled particle in a spin bath

    Get PDF
    We consider a spin-orbit coupled particle confined in a quantum dot in a bath of impurity spins. We investigate the consequences of spin-orbit coupling on the interactions that the particle mediates in the spin bath. We show that in the presence of spin-orbit coupling, the impurity-impurity interactions are no longer spin-conserving. We quantify the degree of this symmetry breaking and show how it relates to the spin-orbit coupling strength. We identify several ways how the impurity ensemble can in this way relax its spin by coupling to phonons. A typical resulting relaxation rate for a self-assembled Mn-doped ZnTe quantum dot populated by a hole is 1 μ\mus. We also show that decoherence arising from nuclear spins in lateral quantum dots is still removable by a spin echo protocol, even if the confined electron is spin-orbit coupled.Comment: 18 pages, 1 figur
    corecore