55 research outputs found
Discovery and characterization of a new family of lytic polysaccharide monooxygenases
Lytic polysaccharide monooxygenases (LPMOs) are a recently discovered class of enzymes capable of oxidizing recalcitrant polysaccharides. They are attracting considerable attention owing to their potential use in biomass conversion, notably in the production of biofuels. Previous studies have identified two discrete sequence-based families of these enzymes termed AA9 (formerly GH61) and AA10 (formerly CBM33). Here, we report the discovery of a third family of LPMOs. Using a chitin-degrading exemplar from Aspergillus oryzae, we show that the three-dimensional structure of the enzyme shares some features of the previous two classes of LPMOs, including a copper active center featuring the 'histidine brace' active site, but is distinct in terms of its active site details and its EPR spectroscopy. The newly characterized AA11 family expands the LPMO clan, potentially broadening both the range of potential substrates and the types of reactive copper-oxygen species formed at the active site of LPMOs
Prospective study of daily low-dose nedaplatin and continuous 5-fluorouracil infusion combined with radiation for the treatment of esophageal squamous cell carcinoma
<p>Abstract</p> <p>Background</p> <p>Protracted low-dose concurrent chemotherapy combined with radiation has been proposed for enhanced treatment results for esophageal cancer. We evaluated the efficacy and the toxicity of a novel regimen of daily low-dose nedaplatin (cis-diammine-glycolatoplatinum) and continuous infusion of 5-fluorouracil (5-FU) with radiation in patients with esophageal squamous cell carcinoma.</p> <p>Methods</p> <p>Between January 2003 and June 2008, 33 patients with clinical stage I to IVB esophageal squamous cell carcinoma were enrolled. Nedaplatin (10 mg/body/day) was administered daily and 5-FU (500 mg/body/day) was administered continuously for 20 days. Fractionated radiotherapy for a total dose of 50.4-66 Gy was administered together with chemotherapy. Additional chemotherapy with nedaplatin and 5-FU was optionally performed for a maximum of 5 courses after chemoradiotherapy. The primary end-point of this study was to evaluate the tumor response, and the secondary end-points were to evaluate the toxicity and the overall survival.</p> <p>Results</p> <p>Twenty-two patients (72.7%) completed the regimen of chemoradiotherapy. Twenty patients (60.6%) achieved a complete response, 10 patients (30.3%) a partial response. One patient (3.0%) had a stable disease, and 2 (6.1%) a progressive disease. The overall response rate was 90.9% (95% confidence interval: 75.7%-98.1%). For grade 3-4 toxicity, leukopenia was observed in 75.8% of the cases, thrombocytopenia in 24.2%, anemia in 9.1%, and esophagitis in 36.4%, while late grade 3-4 cardiac toxicity occurred in 6.1%. Additional chemotherapy was performed for 26 patients (78.8%) and the median number of courses was 3 (range, 1-5). The 1-, 2- and 3-year survival rates were 83.9%, 76.0% and 58.8%, respectively. The 1- and 2-year survival rates were 94.7% and 88.4% in patients with T1-3 M0 disease, and 66.2% and 55.2% in patients with T4/M1 disease.</p> <p>Conclusion</p> <p>The treatment used in our study may yield a high complete response rate and better survival for each stage of esophageal squamous cell carcinoma.</p> <p>Trial registration</p> <p>ClinicalTrials.gov Identifier: NCT00197444</p
The molecular basis of polysaccharide cleavage by lytic polysaccharide monooxygenases.
Lytic polysaccharide monooxygenases (LPMOs) are copper-containing enzymes that oxidatively break down recalcitrant polysaccharides such as cellulose and chitin. Since their discovery, LPMOs have become integral factors in the industrial utilization of biomass, especially in the sustainable generation of cellulosic bioethanol. We report here a structural determination of an LPMO-oligosaccharide complex, yielding detailed insights into the mechanism of action of these enzymes. Using a combination of structure and electron paramagnetic resonance spectroscopy, we reveal the means by which LPMOs interact with saccharide substrates. We further uncover electronic and structural features of the enzyme active site, showing how LPMOs orchestrate the reaction of oxygen with polysaccharide chains.We thank K. Rasmussen and R.M. Borup for experimental assistance, and MAXLAB, Sweden and the European Synchrotron Radiation Facility (ESRF), France, for synchrotron beam time and assistance. This work was supported by the UK Biotechnology and Biological Sciences Research Council (grant numbers BB/L000423 to P.D., G.J.D. and P.H.W., and BB/L021633/1 to G.J.D. and P.H.W.), Agence Française de l'Environnement et de la Maîtrise de l'Energie (grant number 1201C102 to B.H.), the Danish Council for Strategic Research (grant numbers 12-134923 to L.L.L. and 12-134922 to K.S.J.). Travel to synchrotrons was supported by the Danish Ministry of Higher Education and Science through the Instrument Center DANSCATT and the European Community's Seventh Framework Programme (FP7/2007-2013) under BioStruct-X (grant agreement 283570). L.M., S.F., S.C. and H.D. were supported by Institut de Chimie Moléculaire de Grenoble FR 2607, LabEx ARCANE (ANR-11-LABX-0003-01), the PolyNat Carnot Institute and the French Agence Nationale de la Recherche (PNRB2005-11).This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nchembio.202
- …