805 research outputs found
Singlet states and the estimation of eigenstates and eigenvalues of an unknown Controlled-U gate
We consider several problems that involve finding the eigenvalues and
generating the eigenstates of unknown unitary gates. We first examine
Controlled-U gates that act on qubits, and assume that we know the eigenvalues.
It is then shown how to use singlet states to produce qubits in the eigenstates
of the gate. We then remove the assumption that we know the eigenvalues and
show how to both find the eigenvalues and produce qubits in the eigenstates.
Finally, we look at the case where the unitary operator acts on qutrits and has
eigenvalues of 1 and -1, where the eigenvalue 1 is doubly degenerate. The
eigenstates are unknown. We are able to use a singlet state to produce a qutrit
in the eigenstate corresponding to the -1 eigenvalue.Comment: Latex, 10 pages, no figure
Geometrical approach to mutually unbiased bases
We propose a unifying phase-space approach to the construction of mutually
unbiased bases for a two-qubit system. It is based on an explicit
classification of the geometrical structures compatible with the notion of
unbiasedness. These consist of bundles of discrete curves intersecting only at
the origin and satisfying certain additional properties. We also consider the
feasible transformations between different kinds of curves and show that they
correspond to local rotations around the Bloch-sphere principal axes. We
suggest how to generalize the method to systems in dimensions that are powers
of a prime.Comment: 10 pages. Some typos in the journal version have been correcte
An expectation value expansion of Hermitian operators in a discrete Hilbert space
We discuss a real-valued expansion of any Hermitian operator defined in a
Hilbert space of finite dimension N, where N is a prime number, or an integer
power of a prime. The expansion has a direct interpretation in terms of the
operator expectation values for a set of complementary bases. The expansion can
be said to be the complement of the discrete Wigner function.
We expect the expansion to be of use in quantum information applications
since qubits typically are represented by a discrete, and finite-dimensional
physical system of dimension N=2^p, where p is the number of qubits involved.
As a particular example we use the expansion to prove that an intermediate
measurement basis (a Breidbart basis) cannot be found if the Hilbert space
dimension is 3 or 4.Comment: A mild update. In particular, I. D. Ivanovic's earlier derivation of
the expansion is properly acknowledged. 16 pages, one PS figure, 1 table,
written in RevTe
Complementarity in atomic and oscillator systems
We develop a unified, information theoretic interpretation of the
number-phase complementarity that is applicable both to finite-dimensional
(atomic) and infinite-dimensional (oscillator) systems. The relevant
uncertainty principle is obtained as a lower bound on {\it entropy excess}, the
difference between number entropy and phase knowledge, the latter defined as
the relative entropy with respect to the uniform distribution.Comment: 5 pages, 2 figures; accepted for publication in Phys. Lett.
Factorizations and Physical Representations
A Hilbert space in M dimensions is shown explicitly to accommodate
representations that reflect the prime numbers decomposition of M.
Representations that exhibit the factorization of M into two relatively prime
numbers: the kq representation (J. Zak, Phys. Today, {\bf 23} (2), 51 (1970)),
and related representations termed representations (together with
their conjugates) are analysed, as well as a representation that exhibits the
complete factorization of M. In this latter representation each quantum number
varies in a subspace that is associated with one of the prime numbers that make
up M
Entropic uncertainty relations for extremal unravelings of super-operators
A way to pose the entropic uncertainty principle for trace-preserving
super-operators is presented. It is based on the notion of extremal unraveling
of a super-operator. For given input state, different effects of each
unraveling result in some probability distribution at the output. As it is
shown, all Tsallis' entropies of positive order as well as some of Renyi's
entropies of this distribution are minimized by the same unraveling of a
super-operator. Entropic relations between a state ensemble and the generated
density matrix are revisited in terms of both the adopted measures. Using
Riesz's theorem, we obtain two uncertainty relations for any pair of
generalized resolutions of the identity in terms of the Renyi and Tsallis
entropies. The inequality with Renyi's entropies is an improvement of the
previous one, whereas the inequality with Tsallis' entropies is a new relation
of a general form. The latter formulation is explicitly shown for a pair of
complementary observables in a -level system and for the angle and the
angular momentum. The derived general relations are immediately applied to
extremal unravelings of two super-operators.Comment: 8 pages, one figure. More explanations are given for Eq. (2.19) and
Example III.5. One reference is adde
Distinguishing two-qubit states using local measurements and restricted classical communication
The problem of unambiguous state discrimination consists of determining which
of a set of known quantum states a particular system is in. One is allowed to
fail, but not to make a mistake. The optimal procedure is the one with the
lowest failure probability. This procedure has been extended to bipartite
states where the two parties, Alice and Bob, are allowed to manipulate their
particles locally and communicate classically in order to determine which of
two possible two-particle states they have been given. The failure probability
of this local procedure has been shown to be the same as if the particles were
together in the same location. Here we examine the effect of restricting the
classical communication between the parties, either allowing none or
eliminating the possibility that one party's measurement depends on the result
of the other party's. These issues are studied for two-qubit states, and
optimal procedures are found. In some cases the restrictions cause increases in
the failure probability, but in other cases they do not. Applications of these
procedures, in particular to secret sharing, are discussed.Comment: 18 pages, two figure
Multicomplementary operators via finite Fourier transform
A complete set of d+1 mutually unbiased bases exists in a Hilbert spaces of
dimension d, whenever d is a power of a prime. We discuss a simple construction
of d+1 disjoint classes (each one having d-1 commuting operators) such that the
corresponding eigenstates form sets of unbiased bases. Such a construction
works properly for prime dimension. We investigate an alternative construction
in which the real numbers that label the classes are replaced by a finite field
having d elements. One of these classes is diagonal, and can be mapped to
cyclic operators by means of the finite Fourier transform, which allows one to
understand complementarity in a similar way as for the position-momentum pair
in standard quantum mechanics. The relevant examples of two and three qubits
and two qutrits are discussed in detail.Comment: 15 pages, no figure
- …
