48 research outputs found

    Implementation of nutritional guidelines in a university hospital monitored by repeated point prevalence surveys

    Get PDF
    Background/Objectives: Malnutrition is present in 20–50% of hospitalized patients, and nutritional care is a challenge. The aim was to evaluate whether the implementation of a nutritional strategy would influence nutritional care performance in a university hospital. Subjects/Methods: This was a prospective quality improvement program implementing guidelines for nutritional care, with the aim of improving nutritional practice. The Nutrition Risk Screening (NRS) 2002 was used. Point prevalence surveys over 2 years to determine whether nutritional practice had improved. Results: In total, 3604 (70%) of 5183 eligible patients were screened and 1230 (34%) were at nutritional risk. Only 53% of the at-risk patients got nutritional treatment and 5% were seen by a dietician. The proportion of patients screened increased from the first to the eighth point prevalence survey (P=0.012), but not the proportion of patients treated (P=0.66). The four initial screening questions in NRS 2002 identified 92% of the patients not at nutritional risk. Conclusions: Implementation of nutritional guidelines improved the screening performance, but did not increase the proportion of patients who received nutritional treatment. Point prevalence surveys were useful to evaluate nutritional practice in this university hospital. In order to improve practice, we suggest using only the four initial screening questions in NRS 2002 to identify patients not at risk, better education in nutritional care for physicians and nurses, and more dieticians employed. Audit of implementation of guidelines, performed by health authorities, and specific reimbursement for managing nutrition may also improve practice.publishedVersio

    N-Myc and GCN5 Regulate Significantly Overlapping Transcriptional Programs in Neural Stem Cells

    Get PDF
    Here we examine the functions of the Myc cofactor and histone acetyltransferase, GCN5/KAT2A, in neural stem and precursor cells (NSC) using a conditional knockout approach driven by nestin-cre. Mice with GCN5-deficient NSC exhibit a 25% reduction in brain mass with a microcephaly phenotype similar to that observed in nestin-cre driven knockouts of c- or N-myc. In addition, the loss of GCN5 inhibits precursor cell proliferation and reduces their populations in vivo, as does loss of N-myc. Gene expression analysis indicates that about one-sixth of genes whose expression is affected by loss of GCN5 are also affected in the same manner by loss of N-myc. These findings strongly support the notion that GCN5 protein is a key N-Myc transcriptional cofactor in NSC, but are also consistent with recruitment of GCN5 by other transcription factors and the use by N-Myc of other histone acetyltransferases. Putative N-Myc/GCN5 coregulated transcriptional pathways include cell metabolism, cell cycle, chromatin, and neuron projection morphogenesis genes. GCN5 is also required for maintenance of histone acetylation both at its putative specific target genes and at Myc targets. Thus, we have defined an important role for GCN5 in NSC and provided evidence that GCN5 is an important Myc transcriptional cofactor in vivo

    Skeletal Muscle Myofibrillar and Sarcoplasmic Protein Synthesis Rates Are Affected Differently by Altitude-Induced Hypoxia in Native Lowlanders

    Get PDF
    As a consequence to hypobaric hypoxic exposure skeletal muscle atrophy is often reported. The underlying mechanism has been suggested to involve a decrease in protein synthesis in order to conserve O2. With the aim to challenge this hypothesis, we applied a primed, constant infusion of 1-13C-leucine in nine healthy male subjects at sea level and subsequently at high-altitude (4559 m) after 7–9 days of acclimatization. Physical activity levels and food and energy intake were controlled prior to the two experimental conditions with the aim to standardize these confounding factors. Blood samples and expired breath samples were collected hourly during the 4 hour trial and vastus lateralis muscle biopsies obtained at 1 and 4 hours after tracer priming in the overnight fasted state. Myofibrillar protein synthesis rate was doubled; 0.041±0.018 at sea-level to 0.080±0.018%⋅hr−1 (p<0.05) when acclimatized to high altitude. The sarcoplasmic protein synthesis rate was in contrast unaffected by altitude exposure; 0.052±0.019 at sea-level to 0.059±0.010%⋅hr−1 (p>0.05). Trends to increments in whole body protein kinetics were seen: Degradation rate elevated from 2.51±0.21 at sea level to 2.73±0.13 µmol⋅kg−1⋅min−1 (p = 0.05) at high altitude and synthesis rate similar; 2.24±0.20 at sea level and 2.43±0.13 µmol⋅kg−1⋅min−1 (p>0.05) at altitude. We conclude that whole body amino acid flux is increased due to an elevated protein turnover rate. Resting skeletal muscle myocontractile protein synthesis rate was concomitantly elevated by high-altitude induced hypoxia, whereas the sarcoplasmic protein synthesis rate was unaffected by hypoxia. These changed responses may lead to divergent adaptation over the course of prolonged exposure

    No effect of short-term amino acid supplementation on variables related to skeletal muscle damage in 100 km ultra-runners - a randomized controlled trial

    Get PDF
    Background: The purpose of this study was to investigate the effect of short-term supplementation of amino acids before and during a 100 km ultra-marathon on variables of skeletal muscle damage and muscle soreness. We hypothesized that the supplementation of amino acids before and during an ultra-marathon would lead to a reduction in the variables of skeletal muscle damage, a decrease in muscle soreness and an improved performance. Methods: Twenty-eight experienced male ultra-runners were divided into two groups, one with amino acid supplementation and the other as a control group. The amino acid group was supplemented a total of 52.5 g of an amino acid concentrate before and during the 100 km ultra-marathon. Pre- and post-race, creatine kinase, urea and myoglobin were determined. At the same time, the athletes were asked for subjective feelings of muscle soreness. Results: Race time was not different between the groups when controlled for personal best time in a 100 km ultra-marathon. The increases in creatine kinase, urea and myoglobin were not different in both groups. Subjective feelings of skeletal muscle soreness were not different between the groups. Conclusions: We concluded that short-term supplementation of amino acids before and during a 100 km ultra-marathon had no effect on variables of skeletal muscle damage and muscle soreness

    Linking Yeast Gcn5p Catalytic Function and Gene Regulation Using a Quantitative, Graded Dominant Mutant Approach

    Get PDF
    Establishing causative links between protein functional domains and global gene regulation is critical for advancements in genetics, biotechnology, disease treatment, and systems biology. This task is challenging for multifunctional proteins when relying on traditional approaches such as gene deletions since they remove all domains simultaneously. Here, we describe a novel approach to extract quantitative, causative links by modulating the expression of a dominant mutant allele to create a function-specific competitive inhibition. Using the yeast histone acetyltransferase Gcn5p as a case study, we demonstrate the utility of this approach and (1) find evidence that Gcn5p is more involved in cell-wide gene repression, instead of the accepted gene activation associated with HATs, (2) identify previously unknown gene targets and interactions for Gcn5p-based acetylation, (3) quantify the strength of some Gcn5p-DNA associations, (4) demonstrate that this approach can be used to correctly identify canonical chromatin modifications, (5) establish the role of acetyltransferase activity on synthetic lethal interactions, and (6) identify new functional classes of genes regulated by Gcn5p acetyltransferase activity—all six of these major conclusions were unattainable by using standard gene knockout studies alone. We recommend that a graded dominant mutant approach be utilized in conjunction with a traditional knockout to study multifunctional proteins and generate higher-resolution data that more accurately probes protein domain function and influence

    Immunohistochemical demonstration of interleukin-1 beta induced changes in acute-phase proteins and albumin in rat liver

    No full text
    Interleukin-1 beta is a potent mediator of the acute-phase response. However, the effects of interleukin-1 beta administration on the topic in vivo production of acute-phase proteins and albumin are so far not well understood. Overnight fasted rats were subcutaneously injected with 0.2 mL 0.9% NaCl (control group) or 6.25 micrograms recombinant human interleukin-1 beta, and rectal temperature was measured at intervals up to 48 h. Livers were perfused-fixed in vivo prior to injection (base-line), and at 9, 24, and 48 h following the interleukin-1 beta injection. Fibrinogen, orosomucoid (alpha 1-acid glycoprotein) and albumin were immunostained using a streptavidin-biotin-immunoperoxidase technique. Rectal temperature peaked 5 h after the single interleukin-1 beta injection, and fell gradually to base-line values by 24 h. Prior to injection only a few hepatocytes, randomly scattered throughout the liver lobule, stained positive for fibrinogen and orosomucoid. In contrast, all hepatocytes stained uniformly positive for fibrinogen and orosomucoid 9 h after interleukin-1 beta injection, whereas at 24 h a predominant centrilobular staining pattern occurred. Due to fasting, albumin positive hepatocytes were already reduced at base-line in both groups. Interleukin-1 beta induced a further significant loss of albumin positive cells in the periportal zone (35 +/- 21%) at 9 h when compared with controls (58 +/- 11%, p = 0.037). In conclusion, subcutaneous interleukin-1 beta (probably by stimulation of interleukin-6) strongly induces fibrinogen and orosomucoid expression in rat liver, and suppresses immunohistochemically stainable albumin in a heterogenous way, mainly in the periportal zone

    Does increasing blood pH stimulate protein synthesis in dialysis patients?

    Full text link
    BACKGROUND: Although the mechanism of muscle wasting in end-stage renal disease is not fully understood, there is increasing evidence that acidosis induces muscle protein degradation and could therefore contribute to the loss of muscle protein stores of patients on hemodialysis, a prototypical state of chronic metabolic acidosis (CMA). Because body protein mass is controlled by the balance between synthesis and degradation, protein loss can occur as result of either increased breakdown, impaired synthesis, or both. Correction of acidosis may therefore help to maintain muscle mass and improve the health of patients with CMA. We evaluated whether alkalizing patients on hemodialysis might have a positive effect on protein synthesis and on nutritional parameters. METHODS: Eight chronic hemodialysis patients were treated daily with oral sodium bicarbonate (NaHCO(3)) supplementation for 10-14 days, yielding a pre-dialytic plasma bicarbonate concentration of 28.6 +/-1.6 mmol/l. The fractional synthesis rates (FSR) of muscle protein and albumin were obtained by the L-[(2)H(5)ring]phenylalanine flooding technique. RESULTS: Oral NaHCO(3 )supplementation induced a significant increase in serum bicarbonate (21.5 +/- 3.4 vs. 28.6 +/- 1.6 mmol/l; p = 0.018) and blood pH (7.41 vs. 7.46; p = 0.041). The FSR of muscle protein and the FSR of albumin did not change significantly (muscle protein: 2.1 +/- 0.2 vs. 2.0 +/- 0.5% per day, p = 0.39; albumin: 8.3 +/- 2.2 vs. 8.6 +/- 2.5% per day, p = 0.31). Plasma concentrations of insulin-like growth factor 1 decreased significantly (33.4 +/- 21.3 vs. 25.4 +/- 12.3 nmol/l; p = 0.028), whereas thyroid-stimulating hormone, free thyroxin and free triiodothyronine did not change significantly and nutritional parameters showed no improvement. CONCLUSION: In contrast to other findings, raising the blood pH of dialysis patients was not associated with a positive effect on albumin and muscle protein synthesis, or nutritional and endocrinal parameters

    Maintained total body water content and serum sodium concentrations despite body mass loss in female ultra-runners drinking ad libitum during a 100 km race

    Full text link
    We investigated in 11 female ultra-runners during a 100 km ultra-run, the association between fluid intake and prevalence of exercise-associated hyponatremia in a cross-sectional study. Athletes drank ad libitum and recorded their fluid intake. They competed at 8.0 (1.0) km/h and finished within 762 (91) min. Fluid intake was 4.1 (1.3) L during the race, equal to 0.3 (0.1) L/h. Body mass decreased by 1.5 kg (p< 0.01); pre race body mass was related to speed in the race (r = -0.78, p< 0.05); and change (Delta) in body mass was not associated with speed in the race. Change in body mass was positively (r = 0.70; p< 0.05), and Delta urinary specific gravity negatively (r = -0.67; p< 0.05), correlated to Delta percent total body water. Changes in body mass were not related to fluid intake during the race. Fluid intake was not correlated to running speed and showed no association with either Delta percent total body water nor Delta [Na] in plasma. Fluid intake showed no relationship with both Delta haematocrit and Delta plasma volume. No exercise-associated hyponatremia occurred. Female ultra- runners consuming fluids ad libitum during the race experienced no fluid overload, and ad libitum drinking protects against exercise-associated hyponatremia. The reported higher incidence of exercise-associated hyponatremia in women is not really a gender effect but due to women being more prone to overdrink
    corecore