2,838 research outputs found
The CP properties of the lightest Higgs boson with sbottom effects
In the framework of the recently proposed gluino-axion model, using the
effective potential method and taking into account the top-stop as well as the
bottom-sbottom effects, we discuss the CP--properties of the lightest Higgs
boson, in particular its CP--odd composition, which can offer new opportunities
at collider searches. It is found that although the CP-odd composition of the
lightest Higgs increases slightly with the inclusion of the sbottom effects, it
never exceeds %0.17 for all values of the renormalization scale Q ranging from
top mass to TeV scaleComment: 24 pp, 12 eps fig
An Alternative Method to Obtain the Quark Polarization of the Nucleon
An alternate method is described to extract the quark contribution to the
spin of the nucleon directly from the first moment of the deuteron structure
function, . It is obtained without recourse to the use of input on the
nucleon wave function from hyperon decays involving the flavor symmetry
parameters, F and D. The result for the quark polarization of the nucleon,
is in good agreement with the values of the singlet axial
current matrix element, , obtained from recent next-to-leading order
analyses of current proton, neutron and deuteron data.Comment: 7 pages, 1 figur
Formula for proton-nucleus reaction cross section at intermediate energies and its application
We construct a formula for proton-nucleus total reaction cross section as a
function of the mass and neutron excess of the target nucleus and the proton
incident energy. We deduce the dependence of the cross section on the mass
number and the proton incident energy from a simple argument involving the
proton optical depth within the framework of a black sphere approximation of
nuclei, while we describe the neutron excess dependence by introducing the
density derivative of the symmetry energy, L, on the basis of a radius formula
constructed from macroscopic nuclear models. We find that the cross section
formula can reproduce the energy dependence of the cross section measured for
stable nuclei without introducing any adjustable energy dependent parameter. We
finally discuss whether or not the reaction cross section is affected by an
extremely low density tail of the neutron distribution for halo nuclei.Comment: 7 pages, 4 figures, added reference
Quasi-Elastic Scattering in the Inclusive (He, t) Reaction
The triton energy spectra of the charge-exchange C(He,t) reaction
at 2 GeV beam energy are analyzed in the quasi-elastic nucleon knock-out
region. Considering that this region is mainly populated by the charge-exchange
of a proton in He with a neutron in the target nucleus and the final proton
going in the continuum, the cross-sections are written in the distorted-wave
impulse approximation. The t-matrix for the elementary exchange process is
constructed in the DWBA, using one pion- plus rho-exchange potential for the
spin-isospin nucleon- nucleon potential. This t-matrix reproduces the
experimental data on the elementary pn np process. The calculated
cross-sections for the C(He,t) reaction at to triton
emission angle are compared with the corresponding experimental data, and are
found in reasonable overall accord.Comment: 19 pages, latex, 11 postscript figures available at
[email protected], submitted to Phy.Rev.
Inclusive Dielectron Cross Sections in p+p and p+d Interactions at Beam Energies from 1.04 to 4.88 GeV
Measurements of dielectron production in p+p and p+d collisions with beam
kinetic energies from 1.04 to 4.88 GeV are presented. The differential cross
section is presented as a function of invariant pair mass, transverse momentum,
and rapidity. The shapes of the mass spectra and their evolution with beam
energy provide information about the relative importance of the various
dielectron production mechanisms in this energy regime. The p+d to p+p ratio of
the dielectron yield is also presented as a function of invariant pair mass,
transverse momentum, and rapidity. The shapes of the transverse momentum and
rapidity spectra from the p+d and p+p systems are found to be similar to one
another for each of the beam energies studied. The beam energy dependence of
the integrated cross sections is also presented.Comment: 15 pages and 16 figure
Nucleon-deuteron elastic scattering as a tool to probe properties of three-nucleon forces
Faddeev equations for elastic Nd scattering have been solved using modern NN
forces combined with the Tucson-Melbourne two-pion exchange three-nucleon
force, with a modification thereof closer to chiral symmetry and the Urbana IX
three-nucleon force. Theoretical predictions for the differential cross section
and several spin observables using NN forces only and NN forces combined with
three-nucleon force models are compared to each other and to the existing data.
A wide range of energies from 3 to 200 MeV is covered. Especially at the higher
energies striking three-nucleon force effects are found, some of which are
supported by the still rare set of data, some are in conflict with data and
thus very likely point to defects in those three-nucleon force models.Comment: 30 pages, 14 Postscript figures; now minor changes in figures and
reference
Precision Determination of the Neutron Spin Structure Function g1n
We report on a precision measurement of the neutron spin structure function
using deep inelastic scattering of polarized electrons by polarized
^3He. For the kinematic range 0.014<x<0.7 and 1 (GeV/c)^2< Q^2< 17 (GeV/c)^2,
we obtain at an average . We find relatively large negative
values for at low . The results call into question the usual Regge
theory method for extrapolating to x=0 to find the full neutron integral
, needed for testing quark-parton model and QCD sum rules.Comment: 5 pages, 3 figures To be published in Phys. Rev. Let
Measurements of the -Dependence of the Proton and Neutron Spin Structure Functions g1p and g1n
The structure functions g1p and g1n have been measured over the range 0.014 <
x < 0.9 and 1 < Q2 < 40 GeV2 using deep-inelastic scattering of 48 GeV
longitudinally polarized electrons from polarized protons and deuterons. We
find that the Q2 dependence of g1p (g1n) at fixed x is very similar to that of
the spin-averaged structure function F1p (F1n). From a NLO QCD fit to all
available data we find at
Q2=5 GeV2, in agreement with the Bjorken sum rule prediction of 0.182 \pm
0.005.Comment: 17 pages, 3 figures. Submitted to Physics Letters
- …
