915 research outputs found

    Effect of Pressure on the Activity Coefficients of Au and Other Siderophile Elements in Liquid Fe-Si Alloys

    Get PDF
    Light elements can alloy into the iron cores of terrestrial planetary bodies. It is estimated that the Earths core contains ~10% of a light element, most likely a combination of S, C, Si, and O with Si probably being the most abundant. Si dissolved into Fe metal liquids can have a significant influence on the activity coefficients of siderophile elements, and thus the partitioning behavior of those elements between the core and mantle. Many of these elements have been investigated extensively at ambient pressure, and studies up to 1 GPa are becoming more common, but few have been studied at pressures above this. The formation of the Earths core has been estimated to have formed at pressures between 40-60 GPa, so investigating the effect pressure has on Sis influence on siderophile element partitioning is important for modeling core formation in the Earth and smaller planets. Pressure is well known to influence volumetric properties of metallic and silicate liquids, and oxygen fugacity (e.g., [10,11]), but less is known about its effect on activity coefficients (e.g., [12]). Some activity coefficients depend strongly upon the Si content of Fe liquids, and the concentration of siderophile elements such as P, Sb, and As in the terrestrial mantle is easily influenced by dissolved Si in the core. Thus, isolating the effect of pressure on activity coefficients in general is critical in quantitative analysis of core formation models. In this work, we investigate the effect variable Si content has on the partitioning of Au between Fe metal and silicate melt at 10 GPa and 2373 K, with the intention of comparing the behavior to that already investigated at lower pressures. In addition, P, V, Mn, Ga, Zn, Cd, Sn, W, Pb, and Nb were also measured and could thus be included in the assessment of potential pressure effects

    Highly Siderophile Elements in Pallasites and Diogenites, Including the New Pallasite, CMS 04071

    Get PDF
    Pallasites are long thought to represent a metallic core-silicate mantle boundary, where the IIIAB irons are linked to the crystallization history of the metallic fraction, and the HED meteorites may be linked to the silicate fraction. However, measurement of trace elements in individual metallic and silicate phases is necessary in order to fully under-stand the petrogenetic history of pallasites, as well as any magmatic processes which may link pallasites to both IIIAB irons and HED meteorites. In order to achieve this objective, abundances of a suite of elements were measured, including the highly siderophile elements (HSEs), in kamacite, taenite, troilite, schreibersite, chromite and olivine for the pallasites Admire, Imilac, Springwater, CMS 04071. In the diogenites GRO 95555, LAP 91900, and MET 00436, metal, sulfide, spinel, pyroxene, and silica were individually measured

    Chalcophile Element Constraints on the Sulfur Content of the Martian Mantle

    Get PDF
    The sulfur content of the Martian mantle is critical to understanding volcanic volatiles supplied to the surface of Mars and possibly climate. In the absence of Martian mantle rocks, sulfur content of the mantle has been inferred from S contents of Martian meteorites or from sedimentary sulfate abundances. Estimates of the sulfur content of the Martian mantle vary from 390-2,000 ppm, all of which are higher than that of the terrestrial mantle (~250 ppm;). Residual sulfide in the Martian mantle controls the distribution of chalcophile elements during partial melting. In this study, we report new analyses of Martian meteorites, and use the incompatible behavior of As, Tl and Pb to infer the sulfide mode of the Martian mantle using a different set of assumptions than those of prior studies

    Tin Abundances Require that Chassignites Originated from Multiple Magmatic Bodies Distinct from Nakhlites

    Get PDF
    Meteorites from Mars lack field context but chemical and chronologic studies have revealed remarkable links between nakhlites and chassignites. A widely held consensus is that nakhlites and chassignites originated from a large, single differentiated flow or shallow intrusive [1-5]. An Ar-Ar study assumed multiple flows based on resolvable age differences between meteorites [6], but did not address the possibility of differential cooling in a large, shallowly emplaced intrusion [1]. REE abundances in pyroxenes from nakhlites and Chassigny led [7] to argue for derivation of these rocks from distinct magmas. Volatile abundances (F, Cl, OH) in chlorapatites indicated that the entire suite of nakhlites and chassignites experienced hydrothermal interaction with a single fluid supporting a single body origin [4]. The discovery of a new chassignite, NWA 8694, extended the Mg# range from 80-54, providing a closer link to nakhlites but revealed the petrological difficulty of fractionating a single body of liquid to yield a series of olivine cumulates with such a large Mg# range [8]. When mafic magmas are emplaced into the crust, crustal assimilation can impart distinct elemental signatures if the country rock has experienced sedimentary or hydrothermal processing [9]. In this work, we used Sn abundances of nakhlites and chassignites to show that these rocks were crystallized from distinct magma batches, providing vital contextual clues to their origin

    Majorite-Garnet Partitioning of the Highly Siderophile Elements: New Results and Application to Mars

    Get PDF
    HSE and Os isotopes are used to constrain processes such as accretion, mantle evolution, crustal recycling, and core-mantle mixing, and to constrain the timing and depth of differentiation of Mars. Although showed that the HSE contents of the martian mantle could have been established by metal-silicate equilibrium in early Mars, the role of a cooling magma ocean and associated crystallization in further fractionating the HSEs is unclear. Garnet is thought to have played an important role in controlling trace element concentrations in the martian mantle reservoirs. However, testing these models, including Os isotopes, has been hindered by a dearth of partitioning data for the HSE in deep mantle phases - majorite, wadsleyite, ringwoodite, akimotoite - that may be present in the martian mantle. We examine the partitioning behavior of HSEs between majorite garnet (gt), olivine (oliv), and silicate liquid (melt)

    The Germanium Dichotomy in Martian Meteorites

    Get PDF
    Germanium is a moderately volatile and siderophile element that follows silicon in its compatibility during partial melting of planetary mantles. Despite its obvious usefulness in planetary geochemistry germanium is not analyzed routinely, with there being only three prior studies reporting germanium abundances in Martian meteorites. The broad range (1-3 ppm) observed in Martian igneous rocks is in stark contrast to the narrow range of germanium observed in terrestrial basalts (1.5 plus or minus 0.1 ppm). The germanium data from these studies indicates that nakhlites contain 2-3 ppm germanium, while shergottites contain approximately 1 ppm germanium, a dichotomy with important implications for core formation models. There have been no reliable germanium abundances on chassignites. The ancient meteoritic breccia, NWA 7533 (and paired meteorites) contains numerous clasts, some pristine and some impact melt rocks, that are being studied individually. Because germanium is depleted in the Martian crust relative to chondritic impactors, it has proven useful as an indicator of meteoritic contamination of impact melt clasts in NWA 7533. The germanium/silicon ratio can be applied to minerals that might not partition nickel and iridium, like feldspars. We report germanium in minerals from the 3 known chassignites, 2 nakhlites and 5 shergottites by LAICP- MS using a method optimized for precise germanium analysis

    Scaling anomalies in the coarsening dynamics of fractal viscous fingering patterns

    Full text link
    We analyze a recent experiment of Sharon \textit{et al.} (2003) on the coarsening, due to surface tension, of fractal viscous fingering patterns (FVFPs) grown in a radial Hele-Shaw cell. We argue that an unforced Hele-Shaw model, a natural model for that experiment, belongs to the same universality class as model B of phase ordering. Two series of numerical simulations with model B are performed, with the FVFPs grown in the experiment, and with Diffusion Limited Aggregates, as the initial conditions. We observed Lifshitz-Slyozov scaling t1/3t^{1/3} at intermediate distances and very slow convergence to this scaling at small distances. Dynamic scale invariance breaks down at large distances.Comment: 4 pages, 4 eps figures; to appear in Phys. Rev.

    Petrogenesis of Igneous-Textured Clasts in Martian Meteorite Northwest Africa 7034

    Get PDF
    The martian meteorite Northwest Africa 7034 (and pairings) is a breccia that samples a variety of materials from the martian crust. Several previous studies have identified multiple types of igneous-textured clasts within the breccia [1-3], and these clasts have the potential to provide insight into the igneous evolution of Mars. One challenge presented by studying these small rock fragments is the lack of field context for this breccia (i.e., where on Mars it formed), so we do not know how many sources these small rock fragments are derived from or the exact formation his-tory of these sources (i.e., are the sources mantle de-rived melt or melts contaminated by a meteorite impactor on Mars). Our goal in this study is to examine specific igneous-textured clast groups to determine if they are petrogenetically related (i.e., from the same igneous source) and determine more information about their formation history, then use them to derive new insights about the igneous history of Mars. We will focus on the basalt clasts, FTP clasts (named due to their high concentration of iron, titanium, and phosphorous), and mineral fragments described by [1] (Fig. 1). We will examine these materials for evidence of impactor contamination (as proposed for some materials by [2]) or mantle melt derivation. We will also test the petrogenetic models proposed in [1], which are igneous processes that could have occurred regardless of where the melt parental to the clasts was formed. These models include 1) derivation of the FTP clasts from a basalt clast melt through silicate liquid immiscibility (SLI), 2) derivation of the FTP clasts from a basalt clast melt through fractional crystallization, and 3) a lack of petrogenetic relationship between these clast groups. The relationship between the clast groups and the mineral fragments will also be explored

    Dynamic Monte Carlo Measurement of Critical Exponents

    Full text link
    Based on the scaling relation for the dynamics at the early time, a new method is proposed to measure both the static and dynamic critical exponents. The method is applied to the two dimensional Ising model. The results are in good agreement with the existing results. Since the measurement is carried out in the initial stage of the relaxation process starting from independent initial configurations, our method is efficient.Comment: (5 pages, 1 figure) Siegen Si-94-1
    corecore