2,856 research outputs found

    High temperature static strain sensor development program

    Get PDF
    Electrical resistance strain gages useful for static strain measurements on nickel or cobalt superalloy parts inside a gas turbine engine on a test stand are being developed. Measurements of this type are of great importance in meeting the goals of the HOST program because, without reliable knowledge of the stresses and strains which exist in specific components, it will be difficult to fully appreciate where improvements in design and materials can be implemented. The first part of the effort consisted of a strain gage alloy development program which will be followed by an investigation of complete strain gage systems which will use the best of the alloys developed together with other system improvements

    Radiation Rates for Low Z Impurities in Edge Plasmas

    Full text link
    The role of impurity radiation in the reduction of heat loads on divertor plates in present experiments such as DIII-D, JET, JT-60, ASDEX, and Alcator C-Mod, and in planned experiments such as ITER and TPX places a new degree of importance on the accuracy of impurity radiation emission rates for electron temperatures below 250 eV for ITER and below 150 eV for present experiments. We have calculated the radiated power loss using a collisional radiative model for Be, B, C, Ne and Ar using a multiple configuration interaction model which includes density dependent effects, as well as a very detailed treatment of the energy levels and meta-stable levels. The "collisional radiative" effects are very important for Be at temperatures below 10 eV. The same effects are present for higher Z impurities, but not as strongly. For some of the lower Z elements, the new rates are about a factor of two lower than those from a widely used, simpler average-ion package (ADPAK) developed for high Z ions and for higher temperatures. Following the approach of Lengyel for the case where electron heat conduction is the dominant mechanism for heat transport along field lines, our analysis indicates that significant enhancements of the radiation losses above collisional radiative model rates due to such effects as rapid recycling and charge exchange recombination will be necessary for impurity radiation to reduce the peak heat loads on divertor plates for high heat flux experiments such as ITER.Comment: Preprint for the 11th PSI meeting, gzipped postscript with 11 figures, 14 page

    Operation Overload: Career Planning Education in South Dakota

    Get PDF
    This thesis examines South Dakota’s workforce issues and their potential relations to career planning education curriculum, policies, and practices in the state based on students’ perspectives. Using 8-12th grade students’ responses from consumer satisfaction surveys taken before and after a roughly hour-long career planning workshop the study provides several pieces of evidence of gaps in career planning education. Based on this evidence and national career planning curriculum standards or best practices the thesis recommends three actions to improve career planning education delivery: increasing access to counselors/hiring counselors, updating curriculum include comprehensive subjects and more often to current with the job market, and finally introducing short workshops online or in person to fill in the gaps and help the disparities of Career and Technical Education (CTE) district to district. These recommendations could help play a role in stopping the ripple effect failing CTE has on workforce development issues such as brain drain in South Dakota

    Calculations of Energy Losses due to Atomic Processes in Tokamaks with Applications to the ITER Divertor

    Full text link
    Reduction of the peak heat loads on the plasma facing components is essential for the success of the next generation of high fusion power tokamaks such as the International Thermonuclear Experimental Reactor (ITER) 1 . Many present concepts for accomplishing this involve the use of atomic processes to transfer the heat from the plasma to the main chamber and divertor chamber walls and much of the experimental and theoretical physics research in the fusion program is directed toward this issue. The results of these experiments and calculations are the result of a complex interplay of many processes. In order to identify the key features of these experiments and calculations and the relative role of the primary atomic processes, simple quasi-analytic models and the latest atomic physics rate coefficients and cross sections have been used to assess the relative roles of central radiation losses through bremsstrahlung, impurity radiation losses from the plasma edge, charge exchange and hydrogen radiation losses from the scrape-off layer and divertor plasma and impurity radiation losses from the divertor plasma. This anaysis indicates that bremsstrahlung from the plasma center and impurity radiation from the plasma edge and divertor plasma can each play a significant role in reducing the power to the divertor plates, and identifies many of the factors which determine the relative role of each process. For instance, for radiation losses in the divertor to be large enough to radiate the power in the divertor for high power experiments, a neutral fraction of 10-3 to 10-2 and an impurity recycling rate of netrecycle of ~ 10^16 s m^-3 will be required in the divertor.Comment: Preprint for the 1994 APSDPP meeting, uuencoded and gzipped postscript with 22 figures, 40 pages

    High temperature static strain gage alloy development program

    Get PDF
    The literature, applicable theory and finally an experimental program were used to identify new candidate alloy systems for use as the electrical resistance elements in static strain gages up to 1250K. The program goals were 50 hours of use in the environment of a test stand gas turbine engine with measurement accuracies equal to or better than 10 percent of full scale for strains up to + or - 2000 microstrain. As part of this effort, a computerized electrical resistance measurement system was constructed for use at temperatures between 300K and 1250K and heating and cooling rates of 250K/min and 10K/min. The two best alloys were an iron-chromium-aluminum alloy and a palladium base alloy. Although significant progress was made, it was concluded that a considerable additional effort would be needed to fully optimize and evaluate these candidate systems

    Gravitomagnetic Resonance Shift due to a Slowly Rotating Compact Star

    Full text link
    The effect of a slowly rotating mass on a forced harmonic oscillator with two degrees of freedom is studied in the weak field approximation. It is found that according to the general theory of relativity there is a shift in the resonat frequency of the oscillator which depends on the density and rotational frequency of the gravitational source. The proposed shift is quite small under normal physical situations however it is estimated that for compact x-ray sources such as white dwarfs, pulsars, and neutron stars the shift is quite appreciable.Comment: 8 pages, 2 figures, Accepted for Publication in Inter. Journal of Modern Physics

    High temperature static strain gage development contract, tasks 1 and 2

    Get PDF
    Results are presented for the first two tasks to develop resistive strain gage systems for use up to 1250 K on blades and vanes in gas turbine engines under tests. The objective of these two tasks was to further improve and evaluate two static strain gage alloys identified as candidates in a previous program. Improved compositions were not found for either alloy. Further efforts on the Fe-11.9Al-10.6Cr weigth percent alloy were discontinued because of time dependent drift problems at 1250 K in air. When produced as a 6.5 micrometer thick sputtered film, the Pd-13Cr weight percent alloys is not sufficiently stable for this use in air at 1250 K and a protective overcoat system will need to be developed

    Computerized Medication Monitoring System

    Get PDF
    journal articleBiomedical Informatic
    • …
    corecore