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ABSTRACT 

The literature, applicable theory and finally an experimental program were 
used TO identify new candidate alloy systems for use as the electrical resistance 
elements in static strain gages up to 1250K. The program goals were 50 hours of 
use in the environment of a test stand gas turbine engine with measurement accu- 
racies equal to or better than 10 percent of full scale for strains up to 2000 
microstrain. As part of this effort, a computerized electrical resistance 
measurement system was constructed for use at temperatures between 300K and 
1250K and heating and cooling rates of 250K/min and 10K/min. 
were Fe-10.6Cr-11.9Al and Pd-13Cr in weight percent. Although significant prog- 
ress was made, it was concluded that a considerable additional effort would be 
needed to fully optimize and evaluate these candidate systems. 

' 
The two best alloys 
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1 .O SUMMARY 

A one-year development program was conducted to identify two resistive 
strain gage alloy candidates for use in gas turbine test stand engines at temper- 
atures up to 1250K. These alloys were to be usable as static strain gages in the 
environment of a gas turbine engine with lifetimes of at least 50 hours at maxi- 
mum strain levels of ? 2,000 VE with errors of no more than plus or minus 10 
percent of full scale. The final strain gages were to measure no more than 3 mm 
on a side for use on smaller airfoils, with total gage thicknesses not to exceed 
0.5 mm for a wire gage or 0.2 mm for a foil type strain gage. 

After an initial literature survey and analysis, ten alloy candidates were 
identified using as a ranking system the product of relative numerical values 
estimated for key material properties. After some preliminary testing, a review 
and discussion with NASA, these ten were reduced to six candidates for further 
evaluation and development. The original fabrication plan to prepare the alloys 
by sputtering was replaced for reasons of speed and economy by drop-casting the 
arc-melted alloys to form rods inside ceramic tubes. For making resistance 
measurements, these rods were subsequently ground and polished to form strips, 
typically 0.056 x 0.444 x 12.7 cm long. A resistance measurement facility was 
constructed which was capable of making precision measurements up to 1250K at 
constant temperatures or at rates of heating and cooling from 10 to 250K/min in 
an argon atmosphere. The system used the four-wire resistance measurement 
approach with a high quality voltmeter, scanner, and a computer to measure and 
process the data. 

A selection process was developed and used to compare the six final 
candidate systems: Pt-Pd-Mo, Pd-Ag-Mo, Ni-Si-Cr, Pd-Cr, Pt-W and Fe-Cr-Al. The 
Mo-Ag-Pd system was dropped from the list of six final candidate systems when 
problems with liquid immiscibility were encountered. The Nicrosil, Ni-Si-Cr, 
system was also dropped because its resistance did not vary linearly with 
temperature and it had a relatively high thermal coefficient of resistivity. A 
series of 32 different alloy samples of the other candidate systems were prepared 
and evaluated in an iterative process which involved measurements of electrical 
drift at 1250K and measurements of the thermal coefficient of resistivity over 
the range from 300 to 1250K. Measurements were made of the sensitivity of the 
electrical resistance to rates of heating and cooling from 10 to 250K/min and the 
repeatabilities of resistance over the range 300 to 1250K. The compositions, the 
stress-strain behavior, melting points, the coefficients of thermal expansion, 
creep and the resistances to oxidation of the best alloy of each type were also 
measured. 

1-1 



The two bes t  a l l o y  candida tes  f i n a l l y  i d e n t i f i e d  were Pd-13Cr and Fe-10.6Cr- 
~ 

11.9A1 i n  weight percent .  It was concluded t h a t  t h e  o p t i o n a l  second year of t h i s  
program t o  f a b r i c a t e  and tes t  complete s t r a i n  gage systems us ing  t h e  a l l o y s  
developed during t h e  f i r s t  year  should be delayed u n t i l  a f t e r  an a d d i t i o n a l  
e f f o r t  had been made t o  f u r t h e r  opt imize t h e  two b e s t  a l l o y  systems i d e n t i f i e d .  

1-2 



2.0 INTRODUCTION 

The purpose of t h i s  e f f o r t  was t o  advance our a b i l i t i e s  t o  des ign  and 
produce improved gas t u r b i n e  engines  through t h e  development of an improved s ta-  
t i c  s t r a i n  gage. Th i s  improved s t r a i n  gage w a s  t o  be  a b l e  t o  de te rmine  t h e  elas- 

measurements of t h e  r e l a t i v e  changes i n  the e l ec t r i ca l  r e s i s t a n c e  of a r e s i s t o r  
network a t t ached  t o  t h e  component of i n t e r e s t .  
t h i s  s enso r  system, inc lud ing  t h e  leadwires ,  would have t o  be e l e c t r i c a l l y  
i n s u l a t e d  from t h e  t u r b i n e  p a r t ,  be e l e c t r i c a l l y  s t a b l e  and a l s o  a b l e  t o  s u r v i v e  
t h e  chemical and thermal environments and the high c e n t r i f u g a l  fo rces  p re sen t  
w i t h i n  t h e s e  engines .  

I 

I t i c  s t r a i n s  i n  gas t u r b i n e  p a r t s  w i t h i n  an engine running on a tes t  s t and  by 

I n  o rde r  t o  o p e r a t e  p rope r ly ,  

I 

1 
I 

The major t e c h n i c a l  goa l  of t h i s  s t r a i n  gage development program was a use- 
f u l  l i f e t i m e  of a t  l eas t  50 hours  a t  temperatures  up t o  1250K. The tempera tures  
of  u se  would range from l O O O K  t o  1250K w i t h  maximum s t r a i n  l e v e l s  of +2000 micro- 
s t r a i n s  a t  1250K and +_3000 m i c r o s t r a i n s  a t  1000K. An accuracy goa l  of + lo  per- 
cent of f u l l  s c a l e  w a s  a l s o  e s t a b l i s h e d .  The senso r  s i z e  requirements  were 3mm 
square  f o r  smaller a i r f o i l s  whi le  6 mm square would be accep tab le  f o r  l a r g e r  
a i r f o i l s .  The maximum th i ckness  was not  t o  exceed 0.5 mm f o r  a w i r e  system and 
0 .2  mm f o r  a t h i n  f i l m  system. 

I 

Th i s  work was p a r t  of a much l a r g e r  e f f o r t  by t h e  Na t iona l  Aeronaut ics  and 
Space Adminis t ra t ion  c a l l e d  t h e  HOST program. The goal  of t h e  HOST program i s  t o  
improve t h e  technology i n  t h e  hot  s e c t i o n s  of gas  t u r b i n e  engines .  The HOST 
program i s  t o  cont inue  on i n t o  t h e  1990's ,  suppor t ing  a v a r i e t y  of s t u d i e s  by 
va r ious  aerospace  c o n t r a c t o r s  and by o the r s  a t  NASA Research Cen te r s .  Th i s  con- 
t r a c t ,  NAS3-23169, i s  one of a number of ea r ly  programs i n  t h e  HOST e f f o r t  
d i r e c t e d  toward t h e  development of improved senso r s  f o r  u s e  i n s i d e  gas  t u r b i n e  
engines .  The goa l  of t h e  f i r s t  year  of t h i s  e f f o r t  was t o  i d e n t i f y  s e v e r a l  new 
and improved a l l o y s  f o r  use  as t h e  s t r a i n  sensing elements .  An o p t i o n a l  second 
year  of e f f o r t  was t o  demonstrate  t h e  use  of t w o  of t h e s e  a l l o y s  i n  a complete 
s t r a i n  gage system which would s a t i s f y  t h e  goa l s  mentioned above. 

S t r a i n  gage systems which employ platinum a l l o y  wires embedded i n  flame- 
sprayed alumina have been used s u c c e s s f u l l y  i n  gas  t u r b i n e  engines  t o  measure 
dynamic s t r a ins  up t o  temperatures  as high a s  1250K. Dynamic s t r a i n s ,  however, 
are much easier t o  measure because only  r e l a t i v e  va lues  are r equ i r ed  over  ve ry  
s h o r t  t i m e  spans.  Apparent s t r a i n  co r rec t ions  due t o  t h e  v a r i o u s  e f f e c t s  of  
tempera ture  on t h e  vo l t ages  measured and d r i f t s  i n  r e s i s t a n c e  wi th  t i m e  re la t ive  
t o  a r e f e r e n c e  va lue  of ze ro  s t r a i n  do not  have t o  be  cons idered .  

i 



The static strain measurement problem for this application is especially 
difficult because of the high temperatures involved compared to the reference 
condition of room temperature at zero strain. This requirement for stability 
with both time and temperature change is further compounded by the fact that 
temperatures on the surfaces of gas turbine hardware are difficult to determine, 
uncertainties of flOK being common. The presence of high thermal gradients 
further compounds this problem. These uncertainties make apparent strain correc- 
tions from prior calibration runs especially difficult and generates a require- 
ment that the thermal coefficient of resistivity, (TCR), be extremely low, of the 
order of 20 ppm/K 

AR/R 
TCR = - < 20 x 10-6/K 

AT - 

where 

AR = Change in Electrical Resistance 
R = Electrical Resistance 
T = Temperature. 

There has been an increasing recognition that if significant progress is to 
be made in the development of improved strain gages, completely new alloys must 
be identified for use as the sensing elements. The Ni-20 Cr alloy (composition 
in weight percent) is the most widely used sensor composition presently used in 
gas turbine engines. It's maximum use temperature is approximately 800K which is 
far below the temperature requirements of this program. The resistance of this 
alloy is non-linear with temperature and when heated above 800K the resistance 
becomes sensitive to the rates of heating and cooling. 

Fine wires of a commercial heating wire composition, Fe-22.OCr-5.7Al- 
0.5Co" have also been used to measure strains at temperatures up to about 
1000K. The resistance of this wire is also nonlinear with temperature and sensi- 
tive to the rates of heating and cooling. A demonstration of the usefulness of 
this alloy as compared with strains measured using a laser speckle technique is 
the subject of a current NASA contract NAS3-23690 (Reference 1). The earlier 
work of Lemcoe and coworkers with other FeCrAl type alloys under NASA funding is 
also important in showing that other alloys in this system may be used as strain 
gage elements (References 2 and 3 ) .  
22126 showed that above about 1000K, the Fe-22.OCr-5.7A1-0.5Co alloy underwent 
metallurgical changes which made it unsuitable for use as a strain gage sensor 
(Reference 4). 

More recent work under NASA contract NAS3- 

*Kanthal A-1, Kanthal Corp., Bethel, Connecticut 
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Because of the need for chemical stability, especially the need to resist 
oxidation at high temperatures, investigations have also been made of the poten- 
tial usefulness of precious metal alloys as strain gage sensors. The work of 
Bertodo is by far the most outstanding (References 5 to 9 )  although the important 
work of Esterling should also be mentioned (Reference 10). 
discussion of prior work and the metallurgical problems involved are reviewed in 

A more complete 

i Section 3.1 of this report. 

This program has generated data on the electrical and mechanical properties 
of a variety of relatively stable materials. A technique was developed to easily 
prepare test samples of a variety of compositions and an experimental facility 
was developed to measure their electrical resistivities up to 1250K under 
both dynamic and static thermal conditions. Some improved materials were 
identified which may be useful not only as strain gage sensors but also in other 
electrical circuits where electrical stability over a significant range of 
elevated temperatures is important. 
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3.0 INITIAL EFFORTS AND PLANS 

The i n i t i a l  t a s k  i,n t h i s  program was t o  conduct a s tudy  t o  i d e n t i f y  a l l o y s  
which might be s u i t a b l e  f o r  use a s  t h e  r e s i s t a n c e  sens ing  element i n  s t a t i c  
s t r a i n  gages capable  of o p e r a t i n g  t o  1250K i n  t h e  environment i n s i d e  a gas  t u r -  
b ine  engine .  This e f f o r t  included: 
materials cand ida te s ,  ( 2 )  a m a t e r i a l s  ana lys i s  t o  de te rmine  new a l l o y s  and ( 3 )  
c o n s u l t a t i o n  with recognized m a t e r i a l s  exper t s .  A minimum of  t e n  a l l o y s  were t o  
be i d e n t i f i e d  and recommended t o  t h e  NASA P r o j e c t  Manager us ing  a m e r i t  r anking  
system which was t o  be developed a s  a par t  o f  t h e  program. 
d i s c u s s i o n  of t h e  t e n  a l l o y s ,  t h e  NASA Projec t  Manager was t o  s e l e c t  s i x  candi- 
d a t e s  f o r  experimental  e v a l u a t i o n  and development i n  t h i s  program. 

( 1 )  a l i t e r a t u r e  sea rch  t o  i d e n t i f y  e x i s t i n g  

A f t e r  a review and 

3.1 L i t e r a t u r e  Review 

The Research Center l i b r a r y  l i t e r a t u r e  search  computer was used t o  provide  a 
l i s t i n g  of l i t e r a t u r e  t i t l e s  a s s o c i a t e d  with s t r a i n  gages ,  key m a t e r i a l s  proper- 
t i e s  and h igh  temperature a l l o y  f a m i l i e s .  
p r o p r i a t e  t i t l e s  were ordered  by t h e  l i b r a r y .  Over 140 a r t i c l e s  were read and 
d i scussed .  P ro fes so r  Hans Nowotny, an i n t e r n a t i o n a l l y  known m a t e r i a l s  s c i e n t i s t  
p r e s e n t l y  a s s o c i a t e d  wi th  t h e  Un ive r s i ty  of Connecticut and a c o n s u l t a n t  on t h i s  
c o n t r a c t ,  w a s  a l s o  involved i n  t h i s  e f f o r t .  A b ib l iog raphy  of  t h e s e  sou rces ,  
inc luded  i n  t h i s  r e p o r t  a s  Appendix I, was a l s o  prepared and s e n t  t o  t h e  NASA 
Pro j  ec  t Manager. 

These l i s t i n g s  were reviewed and ap- 

S ince  t h e  f i r s t  a t tempt  t o  measure s t r a i n  by bonding a r e s i s t o r  network t o  a 
s u r f a c e  i n  1938, many people have published d e s c r i p t i o n s  of t h e i r  i n v e s t i g a t i o n s .  
The ASRl Symposium on t h i s  s u b j e c t  i n  1957 (Reference 11) d e s c r i b e s  some of t h e  
b e s t  work up t o  t h a t  d a t e .  Most o f  t h e  work t o  develop gages f o r  e l e v a t e d  
temperature use has cen te red  on t h e  u s e  of a l l o y s  of  t h e  t r a n s i t i o n  meta ls :  N i -  
C r ,  N i - C r - A l ,  Fe-Cr-A1 and Ni-Cr-Fe-A1 (Ref. 5 ,  10, 12 ) .  These a l l o y s  have r e l a -  
t i v e l y  good r e s i s t a n c e s  t o  o x i d a t i o n  and gene ra l ly  e x h i b i t  non l inea r  r e s i s t a n c e  
v e r s u s  t empera tu re  behavior with r e l a t i v e l y  low temperature c o e f f i c i e n t s  o f  
r e s i s t a n c e  (TCR). 
mat ions ,  appa ren t ly  o r d e r i n g  r e a c t i o n s .  The t r a n s i t i o n  me ta l s  are unusual i n  
t h a t  o r d e r i n g  r e a c t i o n s  tend t o  i n c r e a s e  the r e s i s t a n c e  of t h e  a l l o y  i n s t e a d  of  
dec reas ing  t h e  r e s i s t a n c e  which i s  t h e  normal r e s u l t  of o r d e r i n g  r e a c t i o n s  
(Reference 10 ) .  

These a l l o y s  have a tendency t o  undergo s o l i d  s t a t e  t r a n s f o r -  

A number of  concepts  have been advanced t o  overcome o r  reduce t h e  e f f e c t s  of  
h igh  T C R ' s  by methods which avoid t h e  development o f  a s p e c i a l  new a l l o y .  
Attempts have been made t o  f a b r i c a t e  a coated wire s y s t e m  a s  a way t o  combine 
materials wi th  p o s i t i v e  and nega t ive  TCR'S (Reference 2, 3, and 13) and t o  
combine a l l o y s  i n  series which have e i t h e r  o p p o s i t e  o r  widely d i f f e r i n g  TCR' s  
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(Reference 5 and 14). 
circuits is contained in Reference 7. 

A summary of various possible temperature-compensation 

In recent Chinese work by Wu, et a1 (Reference 15) a new Fe-Cr-Al-V-Ti-Y 
strain gage alloy was developed with improved properties. 
given special drawing and thermal pretreatments to optimize their properties. 
The behavior of these strain gages is presently being evaluated in the United 
States. 

These alloys have been 

Considerable attention has been placed on alloys of the precious metals 
because of their high melting points and generally good resistances to oxidation. 
The best alloys which resulted from the extensive alloy development work by 
Bertodo (References 5 through 9) are Pt-8.5W and 45 Pt-45 Pd and 10 Mo in weight 
percent. Additional work by other investigators as well as Bertodo, summarized 
in Reference 9, has suggested that metallurgical transformations (ordering reac- 
tions ) can also occur in the Pt-(8-1O)W alloys at low temperatures. Although 
Bertodo indicates that alloys of these types should be usable up to 1000°C 
(1273K), there are concerns about the oxidation resistance of alloys of these 
types which contain components which form volatile metal oxides. 
Weise and Foster, in their work to evaluate strain gages for use in high tempera- 
ture fatigue (Reference 1 3 ) ,  conclude that because of oxidation, Pt-8W should not 
be used above 750K. 

For example, 

3.2 Sample Fabrication Plan 

Because it was expected that the sputtering technique would be selected as 
the fabrication approach to be used in making complete strain gage systems, it 
was planned also to use this technique to prepare samples of the different alloy 
candidates. Relatively coarse resistor networks with sizeable end tabs were to 
be sputtered on commercially available thin alumina substrates, typically cut 
into plates 7.5 X 2.5 X 0.025 cm. In order to evaluate the thermal sensitivity 
of the electrical resistance of the alloy sample independent of the thermal ex- 
pansion of the alumina substrate, the resistive network was to be sputtered on an 
area of the substrate which had been precoated with an evaporated film of carbon 
or some other organic coating. A subsequent heating in air should burn off the 
carbon to leave a "free" sputtered network whose measured electrical resistance 
should only reflect its intrinsic sensitivity to temperature. 

Non-precious metal sputtering targets were t o  be cast to shape using the 
melting and casting facilities available at the Research Center. 
alloy targets were to be prepared by using a composite target approach being 
developed at the Commercial Products Division of Pratt and Whitney. In this 
approach, a disk of a non-precious metal, such as tungsten, is used as a sub- 
strate on to which are sputtered areas of precious metals from pure precious 

Precious metal 
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metal t a r g e t s .  The composition of t h e  a l l o y  s p u t t e r e d  from t h i s  t a r g e t  can be 
v a r i e d  by having used masks wi th  d i f f e r e n t  ho le  s i z e s  and by us ing  d i f f e r e n t  pure 
prec ious  meta l  s p u t t e r i n g  t a r g e t s .  In t h e  f i n a l  s p u t t e r i n g  s t e p  us ing  t h i s  com- 
p o s i t e  t a r g e t ,  t h e  v a r i o u s  elements i n  t h e  a l l o y  a r e  mixed a s  they  t r a v e l  simul- 
taneous ly  from d i f f e r e n t  a r e a s  of t h e  t a r g e t  t o  t he  same spo t  i n  t h e  sample. 

A f t e r  t h e  program s t a r t e d ,  i t  was discovered t h a t  una t tached  s p u t t e r e d  coa t -  
ings  were d i f f i c u l t  t o  prepare .  It was also r e a l i z e d  t h a t  i t  was going t o  be 
d i f f i c u l t  t o  accomplish a l l  t h e  s p u t t e r i n g  runs  under optimum c o n d i t i o n s  t h a t  we 
would l i k e  t o  have done i n  t h i s  program within t h e  necessa ry  t i m e .  A drop c a s t -  
ing  technique f o r  sample f a b r i c a t i o n ,  described more f u l l y  i n  Sec t ion  4 .1 ,  was 
then  developed. This approach permi t ted  t e s t  samples t o  be  f a b r i c a t e d  much more 
qu ick ly  and with less expense. This a l s o  permitted many more a l l o y  i t e r a t i o n  t o  
be accomplished than was r equ i r ed  by t h e  Statement of Work f o r  t h i s  program. 

3.3 Tes t  P lan  

One of t h e  requirements of t he  Statement of Work w a s  t h a t  a tes t  p lan  should 
be developed t o  d e s c r i b e  t h e  experiments which would be used t o  e v a l u a t e  t h e  
va r ious  a l l o y s  t h a t  were prepared. The f i r s t  p a r t  of t h e  tes t  p l an  desc r ibed  a 
l i m i t e d  s e r i e s  of  c r i t i c a l  p rope r ty  eva lua t ions  t h a t  would be used t o  sc reen  t h e  
s i x  a l l o y  types  s e l e c t e d  by t h e  NASA Program Manager down t o  four  a l l o y s .  A t  
l e a s t  one i t e r a t i o n  of composition was required of each a l l o y  type  t o  see  i f  
b e t t e r  p r o p e r t i e s  could be developed. The p r o p e r t i e s  eva lua ted  were: ( a )  t h e  
r e p e a t a b i l i t y  of r e s i s t i v i t y  ( b )  t h e  thermal c o e f f i c i e n t  of  r e s i s t i v i t y  over t h e  
range of temperature from 300 t o  1250K, (c) t h e  e f f e c t  of r a t e  of change of t e m -  
p e r a t u r e  (10, 50 and 250K/min) on t h e  r e p e a t a b i l i t y  and t h e  thermal c o e f f i c i e n t  
of r e s i s t i v i t y  and ( d )  t h e  d r i f t  o r  change i n  r e s i s t i v i t y  du r ing  a 3 hour soak a t  
1250K. 

In  o r d e r  t o  a s s u r e  t h a t  the p rope r t i e s  measured were no t  showing t h e  e f f e c t s  
of g r a i n  growth o r  similar processes ,  t e s t  samples were t o  be g iven  a p r e t e s t  
s t a b i l i z a t i o n  hea t  i n  argon a t  1473K, well above t h e  t o p  t e s t  temperature of  
1250K. 
mounted, po l i shed  and examined me ta l log raph ica l ly  and/or with t h e  Scanning Elec- 
t r o n  Microscope (SEM) a f t e r  being slowly cooled a f t e r  t h e s e  h e a t  soaks t o  d e t e r -  
mine i f  any second phase p r e c i p i t a t e s  were p r e s e n t .  
p r e c i p i t a t e s  which might undergo exsolu t ion  o r  r e s o l u t i o n  p rocesses  du r ing  
d i f f e r e n t  thermal exposures were not  considered t o  be of i n t e r e s t .  

Arc-melted samples of p o t e n t i a l  a l loy  compositions were a l s o  t o  be 

Compositions con ta in ing  
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The second p a r t  o f  t h e  tes t  plan w a s  t o  measure some a d d i t i o n a l  p r o p e r t i e s  
of  t h e  four f i n a l  a l l o y s  s e l e c t e d  which would be important  i n  t h e i r  use  as s t r a i n  
gages, but perhaps not  as c r i t i c a l  a s  t h e  p r o p e r t i e s  measured ea r l i e r .  
p rope r t i e s  w e r e :  ( a )  c,hemical composi t ion,  ( b )  me l t ing  p o i n t ,  ( c )  s t r e s s - s t r a i n  
cu rves ,  (d) t h e  c o e f f i c i e n t  of thermal expansion,  ( e )  c r eep  s t r e n g t h  and ( f )  
res i s  t ance t o  ox i d a t  ion .  

These 

form. The p r o p e r t i e s  t o  be measured were r e s i s t i v i t y ,  t h e  thermal  c o e f f i c i e n t  of  
r e s i s t i v i t y  and t h e  d r i f t  o f  e l e c t r i c a l  r e s i s t a n c e  a t  1250K. The purpose o f  t h i s  
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I 4.0 EXPERIMENTAL 

4.1 Sample Preparation 

As mentioned in Section 3.2, the initial work plan was to prepare the 
various alloy samples by sputtering on thin (0.025 cm) alumina plates commer- 
cially available for use as electronic substrates. The sputtering approach was 
subsequently discarded in favor of a drop casting approach which was developed to 
prepare different alloy samples much more quickly and inexpensively. The sput- 
tering approach unfortunately required the fabrication of a new alloy target for 
each different alloy prepared and also the use of very specialized equipment for 
each time consuming sputtering run. 

I 

I 
~ 

I 

In order to prepare samples by drop casting, a commercial" three electrode 
arc melter was first used to prepare homogenized molten buttons of premeasured 
compositions. The initial elemental components all had purities of at least 99.9 
weight percent. These buttons were typically turned over and remelted three 
times before the casting step to ensure uniform mixing. The flat copper water- 
cooled anvil in the arc melter was then replaced by another anvil with a verti- 
cal, centered hole. The hole contained a ceramic tube into which the molten 
alloy would cast. The alloy button, with the bottom surface polished flat, was 
placed over the hole and melted again. When the bottom of the button which was 
against the water-cooled hearth was melted, the small argon over pressure in the 
melting chamber became sufficient to blow the melt into the tube where it 
immediately solidified as a rod. 

The FeCrAl and Pd alloy samples were cast inside fused silica tubes while 
all the other alloys were cast inside alumina tubes in order to avoid chemical 
reactions. Because of the smoothness of the inside surfaces of the fused silica 
tubes and the low coefficient of thermal expansion, the test samples normally 
slid freely out of the silica tubes. When alumina tubes were used, the ceramic 
usually had to be broken in order to remove the samples. Typical cast samples 
were from 8 to 18 cm long and 0.452 cm in diameter. 

In order to develop higher voltages in samples prepared for resistance 
measurements, these cast rods were subsequently reduced by grinding and polishing 
to strips which were 0.056 cm thick. A special hardened steel plate containing 
flat bottomed slots of different depths was prepared in order to accomplish this 
task. Rods were cemented into one of these slots with a thermal wax (bee's wax 
plus rosin) and then the plate was manually held on a grinding or a polishing 
wheel until all of the material which protruded above the slot was removed in a 
uniform fashion. In order to avoid the presence of any of the small shrinkage 
voids which were sometimes present at the centers of the rods, the sample strip 
was normally taken slightly off center from the original cast rod. 

"Centorr Associates, Suncook, N.H. 
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Samples f o r  t e n s i l e  and c reep  t e s t i n g  were prepared by waxing t h e  c a s t  
c y l i n d r i c a l  rods on a f l a t  p l a t e  and g r i n d i n g  away a reduced s e c t i o n  i n  t h e  cen- 
ter  t h i r d  of t h e  sample rod. I n  o r d e r  t o  prepare  a more symmetrical sample ,  t h e  
rod had t o  be turned ove r ,  recemented, and ground aga in  i n  o rde r  t o  form an  
approximately centered  gage s e c t i o n ,  t y p i c a l l y  0.056 cm t h i c k  and as wide as t h e  
o r i g i n a l  diameter of t h e  c a s t  rod. 

Before t e s t i n g ,  t h e  samples were normally hea ted  f o r  s e v e r a l  hours i n  t ank  
argon a t  a temperature w e l l  above one-half of t h e i r  a b s o l u t e  me l t ing  tempera- 
t u r e s .  
1 t o  2 ppm. 
t i o n s  and t o  produce an annealed sample  w i th  a s t a b l e  g r a i n  s t r u c t u r e .  
t r e a t m e n t s ,  t h e  samples were he ld  i n s i d e  small alumina tubes  which were wrapped 
i n  Mo o r  Ta f o i l s  i n  o r d e r  t o  g e t t e r  away any oxygen o r  water vapor which might 
have been present .  

The oxygen concen t r a t ion  p resen t  i n  argon from t h i s  source  was t y p i c a l l y  
This  was done i n  an a t tempt  t o  homogenize t h e i r  chemical composi- 

For t h e s e  

4.2 Res i s t ance  Measurements 

Measurement of e l e c t r i c a l  r e s i s t a n c e  a t  v a r i o u s  cons t an t  o r  changing temper-  
atures were made us ing  a t e s t i n g  f a c i l i t y  i n i t i a l l y  developed f o r  measuring t h e  
e l e c t r i c a l  r e s i s t a n c e s  of 0.0025 cm diameter  FeCrAl a l loy*  wires on p r i o r  NASA 
Cont rac t  NAS3-22126. The furnace  used i n  t h i s  f a c i l l i t y  c o n s i s t e d  of a 2.5 cm 
o u t e r  diameter tube of e i t h e r  s t a i n l e s s  s tee l  o r  Hastalloy-X, which was 21.6 cm 
long and s p l i t  i n  h a l f  l engthwise  f o r  e a s e  of sample set  up. The system a l s o  
inc luded  a power supply and c o n t r o l  system capab le  of supply ing  up t o  1500 amps 
of AC cu r ren t  t o  t h e  tube  h e a t e r  through 2.5 cm wide water-cooled copper e l e c -  
t r o d e s  clamped t o  each end of t h i s  h e a t e r  tube .  The e l e c t r o d e  which supp l i ed  
furnace  power t o  one end of t h e  h e a t e r  t ube  w a s  mounted on b a l l  bea r ings  i n  o r d e r  
t o  accommodate the  thermal expansions of t h e  tube  du r ing  h e a t i n g  and coo l ing .  
d i ag rama t i c  view of t h e  t e s t  system showing t h e  p o s i t i o n  of t h e  test sample 
r e l a t i v e  t o  t h e  h e a t e r  t ube  i s  presented  i n  F igu re  1. 

A 

The complete tube  furnace  system was enc losed  i n  a s e a l e d  p l a s t i c  box which 
was normally purged con t inuous ly  wi th  b u i l d i n g  argon i n  o r d e r  t o  prevent oxida- 
t i o n  of t h e  sample. 
b u i l d i n g  argon, which is  piped i n t o  t h e  l a b o r a t o r y  from a gene ra l  sou rce ,  i s  
be l i eved  t o  be h ighe r  t han  t h a t  p re sen t  i n  t h e  argon from an i n d i v i d u a l  tank .  

Although not measured, t h e  oxygen c o n c e n t r a t i o n  i n  t h e  

Good e l e c t r i c a l  c o n t a c t  wi th  t h e  samples w a s  ob ta ined  by p h y s i c a l l y  clamping 
a fo lded  over 0.25 mm t h i c k  shee t  of p la t inum a g a i n s t  t h e  sample. The clamps 
which supplied t h e s e  f o r c e s  c o n s i s t e d  of double sets of B-1900 n i c k e l  base  super- 

*Kanthal A-1, Kanthal Corp. 
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a l l o y  beams which extended i n t o  t h e  tube  hea te r .  Each of t h e s e  two clamps 
supp l i ed  a c a l c u l a t e d  clamping f o r c e  of  a t  l e a s t  220 N a t  5 cm i n s i d e  t h e  tube  
over  t h e  f u l l  range of t e s t  temperatures from 298 t o  1250K. These f o r c e s  were 
developed by t i g h t e n i n g  a b o l t  j u s t  o u t s i d e  t h e  end of t h e  h e a t e r  tube  between 
t h e  two c a n t i l e v e r e d  clamping beams. 

I n  t h e  i n i t i a l  p lan ,  both of t h e  spu t t e red  e l e c t r o d e  t a b s  were t o  be a t  t h e  
1 
I 

same end of t h e  tube furnace  so t h a t  t h e  two s e t s  of clamping beams were bes ide  
each o t h e r  a t  t h e  same end of t h e  furnace .  When t h e  sample w a s  changed t o  a t h i n  
s t r i p ,  t h e  p o s i t i o n  of t h e  clamps was changed so t h a t  they  were at o p p o s i t e  ends 
of t h e  furnace .  When t h i s  change w a s  made, one of t h e  pa i r s  of clamping e l ec -  
t r o d e s  w a s  suspended from a s p r i n g  s y s t e m  i n  an a t t e m p t  t o  avoid p l ac ing  any 
loads on t h e  sample s t r i p  which might generate undefined r e s i s t a n c e  change ' e f f e c t s  du r ing  t h e  tes ts .  

I The tempera ture  of t h e  furnace  was measured us ing  a 0.005 cm diameter  Type K 
w i r e  thermocouple loca t ed  j u s t  below t h e  sample a t  t h e  c e n t e r  of t h e  furnace .  
This  thermocouple was connected t o  a c o n t r o l l e r *  which could be programmed** t o  
d r i v e  t h e  system through a series of hea t ing  and coo l ing  cyc le s  a t  10, 50 and 250 
K/min o r  t o  hold  t h e  tube furnace a t  a constant temperature of 1250K i n  o rde r  t o  
measure t h e  s t a b i i t y  of t h e  e l e c t r i c a l  r e s i s t a n c e  of t h e  sample. When coo l ing  a t  
250K/min, t h e  programmer au tomat i ca l ly  turned on helium j e t s  below about 600K 
which helped t o  cool  t h e  h e a t e r  tube  t o  maintain such a h igh  rate of coo l ing  a t  
low tempera tures .  

I 

I 
I 

The e l e c t r i c a l  r e s i s t a n c e  of t h e  samples were measured us ing  t h e  four  w i r e  

1 t echnique .  Two platinum wires 0.005 cm i n  d i a m e t e r  were spo t  welded t o  t h e  sam- 
p l e  s t r i p  t o  measure t h e  v o l t a g e  drop across a 3 cm s e c t i o n  of t h e  sample a t  t h e  
c e n t e r  of t h e  tube  furnace .  I n  o rde r  t o  accu ra t e ly  measure t h e  c u r r e n t  through 
t h e  sample, which was t y p i c a l l y  about 1.6 amps, a decade r e s i s t a n c e  box was 
placed i n  series wi th  t h e  sample. Measurement of t h e  vo l t ages  a c r o s s  t h i s  known 
r e s i s t a n c e  provided a measure of t h e  cur ren t  through t h e  sample. The v o l t a g e  
drop a c r o s s  t h e  r e fe rence  decade r e s i s t a n c e  box and the  vo l t age  drop  ac ross  t h e  
sample were fed  through a scanner* t o  a two pen s t r i p  c h a r t  r eco rde r .  
recorded through t h e  scanner ,  a l t e r n a t e l y ,  t h e  v o l t a g e  drop a c r o s s  t h e  sample and 
then  t h a t  a c r o s s  t h e  r e fe rence  decade r e s i s t a n c e  box. The second pen continuous- 
l y  recorded t h e  sample temperature as measured by a 0.005 cm d i a  Type K thermo- 
couple  spot  welded t o  t h e  c e n t e r  of t h e  sample. By use of t h e  z e r o  suppres s ion  
f e a t u r e  of t h e  r eco rde r  and c a r e f u l  s e l e c t i o n  of t h e  v a l u e  of t h e  r e f e r e n c e  
r e s i s t o r ,  i t  w a s  p o s s i b l e  t o  make both of t hese  measurement on a 1 mV f u l l  s c a l e  
range f o r  maximum s e n s i t i v i t y .  These c h a r t s  were read manually and t h e  d a t a  
e n t e r e d  i n t o  a HP 9845 computer f o r  subsequent d a t a  process ing  and p l o t t i n g .  

One pen 

~- 

* Research Inco rpora t ed  
** Research Inco rpora t ed  
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As the program progressed it became evident that improvements would have to 
be made in the resistance measurement system in order to attain the high levels 
of accuracy and stability required for the work. 
that the decade resistance box was sensitive to the temperatures in the labora- 
tory which could vary appreciably, especially over night or on weekends. 
decade box was replaced with a single high precision resistor which was bolted to 
a water-cooled aluminum plate for thermal stability. A complete computer system 
was then obtained to enable more accurate measurements to be made. The system 
consisted of a high precision voltmeter, a high speed scanning system, a program- 
mable integral power supply and a minicomputer to store and process the data*. 
The data measurement program consisted of an initial measurement of the thermo- 
couple voltage followed by a series of 20 readings alternately of the voltage 
drops across the sample and that of the reference resistor and, finally, a mea- 
surement of the thermocouple voltage. The average of each of these three differ- 
ent types of readings were determined and used to compute the relative change in 
resistance at that temperature relative to an initial resistance value measured 
at the start of the run. 

It was determined, for example, 

The 

4.3 Stress-Strain and Creep Testing 

Measurements of stress-strain behavior and creep testing were accomplished 
using commercial high temperature wedge grips made of MAR-M247**. 
rical ends of the samples, prepared as described in Section 4.1 above, were 
gripped by serrated wedges which could slide to accommodate small changes in 
sample diameters or to increase the gripping forces as needed. All tests were 
made in air using a Tinius Olsen Universal Testing machine. Strain gages were 
used to measure strain during stress versus strain measurements made at room 
temperatures. Two gages were used on each sample in order to cancel out any 
possible effects due to bending. In elevated temperature testing, the sample 
gage lengths were taken as the total length of the reduced section, typically 
about 5 centimeters, and the strain was computed from measurements of cross head 
motion. The creep curves were all obtained at 1250K over a period of approxi- 
mately 3 hours. The creep stresses selected were approximately equal to one-half 
of the yield stresses determined in separate tests at 1250K. Sample temperatures 
were measured using a Type K thermocouple which touched the sample at the center 
of the gage length. 

The cylind- 

4.4 Thermal Expansion and Melting Points 

The thermal expansions of these alloys were measured in air using a fused 
silica dilatometer. The expansions and contractions of the samples were 

* Hewlett Packard, 305A Data Acquisition system, 98268 computer and 6002A power 
**Applied Test Systems, Saxonberg, P .A. 
supply. 
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continuously recorded on an X-Y plotter as a function of temperature from the 
output of an LVDT transducer located just above the furnace. 
dimensions were 0.45 cm in diameter and 1.9 cm long. 
cooled at 2.0 K/min and three consecutive cycles were normally run in order to 
make sure that the measurement system was fully stabilized, the last run being 
taken as the most accurate. 

Typical sample 
The samples were heated and 

The melting points of these alloys were determined in argon by supporting a 
length of cast rod in two notches in the end of a one-inch diameter alumina tube 
vertically positioned in the center of an R. F. susceptor. 
determined as the temperature at the end of the alumina tube when the sample 
melted and fell down the tube. 

The melting point was 
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Additional requirements are a low thermal coefficient of resistivity and excel- 
lent resistance to oxidation. Apparent strains are errors in computed strains 

5.0 RESULTS 

5.1 Analysis 

Rigorous theoretical solutions to describe the behavior of an electron in a 
solid, are not available except for the cases of several simple, pure elements. 
Unfortunately, the resistivities of elemental conductors are far too low and the 
thermal coefficients of resistance (TCR'S) are much to high for them to be con- 
sidered as candidates in this program. As the temperature of a crystal lattice 
is increased, the thermal motion of the atoms around their crystal sites 
increases. This causes these atoms to become more effective in scattering or 
interfering with the drift of electrons through the lattice. Increases in resis- 
tivity due to this effect are directly proportional to the absolute temperature. 
In order to overcome this sensitivity of resistance to temperture, some addi- 
tional mechanisms of electron scattering must employed which are either tempera- 
ture independent or change in the reverse sense with temperature. The most 
practical approach is to employ temperature independent mechanisms whose contri- 
butions are so large that the intrinsic lattice effects mentioned above become 
unimportant. 

In the absence of: (1) a rigorous theory from which the electrical proper- 
ties of alloys can be derived, and ( 2 )  reliable electrical data for many alloy 
systems, a number of geneal rules concerning the electrical properties of dilute 
alloys have been developed which were used to guide our efforts. 
summarized below: 

These rules are 

Matthieson's Rule 

Resistivity = PO + PT 

PT is temperature dependent resistivity due to lattice vibration scattering 

Po is temperature independent resistivity due to defects such as alloying 
elements. 
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! LeChatelier - Guertler's Rule 

Temperature Coefficient of resistance, TCR, of an alloy is lower than that 
of a pure metal. (This follows from Matthiesen's Rule.) 

I 

Dellinger's Rule 

The product of 
composition is changed. 
strongly in order to decrease the TCR strongly. 

and TCR tends to be a constant in an alloy system as 
Choose an alloying element which increases 

Linde's Rule 

2 For dilute alloys, A n  is proportional to Vx. 
V = Valence, x = alloying element. 

Choose high Vx to increase -. 

Norburv's Rule 

For dilute alloys in any one row of the Periodic Table, (N-NxI2 is propor- 
tional to 0 ;  where N is atomic number, choose x for high N-N, for the 
maximum increase in n. 

Oxidation of Alloys 

The oxidation rate of an alloy tends to be like that of the principal (host) 
element provided the alloying element does not form an adherent film which 
resists the diffusion of oxygen. 

One method to increase the scattering of electrons would be to add signifi- 
cant amounts of second phase particles. This approach is undesirable, however, 
because it would necessarily include exsolution and resolution processes which 
will change as a function of both temperature and time. The expected result 
would be significant drifts in resistivity with time and an inability to obtain 
reproducible properties. 

The mean free path of an electron in a crystal lattice is of the same order 
as the atomic spacing. This means that even very small second phase precipitates 
would not, in and of themselves, be effective as scattering centers. The primary 
effect of a second phase would be to act as reservoir from which atoms could be 
obtained to change the concentrations of elements in solid solution. One immedi- 
ate criterion in our search, therefore, is that our gage alloy should be single 
phase over the complete temperature range of interest. 
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t hose  t h a t  remained would probably not be a b l e  t o  c o n t r i b u t e  a v e r y  l a r g e  bene f i -  
c i a l  e f f e c t .  

Another approach t o  reduce t h e  TCR would be t o  examine t h e  p r o p e r t i e s  of 
ceramic m a t e r i a l s  o r  materials which conta in  a mixture of m e t a l l i c  and i o n i c  o r  
covalen t  bonding, such as Cerium S u l f i d e .  
tend t o  become b e t t e r  e l e c t r i c a l  conductors as t h e  tempera ture  i s  r a i s e d  and more 
e l e c t r o n s  a r e  a c t i v a t e d  up i n t o  t h e  conduction bands. Although some of t h e s e  
m a t e r i a l s  were reviewed, it was dec ided  tha t  t h i s  was t o o  long term a p r o j e c t  and 
t h a t  it was not l i k e l y  t o  produce v i a b l e  candida tes  w i t h i n  t h e  necessa ry  t i m e  
frame of t h i s  program. 

I o n i c  and c o v a l e n t l y  bonded m a t e r i a l s  

In  ou r  op in ion ,  t h e  b e s t  and most d i r e c t  approach t o  i n c r e a s e  t h e  r e s i s t a n c e  
and reduce t h e  TCR is  by prepar ing  s o l i d  s o l u t i o n s  whose s o l u t e  c o n c e n t r a t i o n s  
cannot change with temperature.  This  leads t o  ques t ions  of which a l l o y i n g  ele- 
ments t o  s e l e c t .  Neglecting environmental s t a b i l i t y  f a c t o r s ,  t h e  fo l lowing  
g u i d e l i n e s  may be used: 

1. The d i f f e r e n c e s  i n  atomic r a d i i  for  apprec i ab le  s o l u b i l i t i e s  should  not  
exceed 10 pe rcen t .  

2. E l e c t r o n e g a t i v i t i e s  should be as c l o s e  as p o s s i b l e  f o r  maximum s o l u b i l -  
i t y ,  d i f f e r e n c e s  g r e a t e r  t han  one h a l f  u n i t  t end  t o  f a v o r  compound f o r -  
mat ion .  

t 3. Mul t ip l e  v a l e n t  s o l u t e  elements should be  p r e f e r r e d .  
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4 .  The elements should be sepa ra t ed  by a s  much a s  p o s s i b l e  i n  t h e  P e r i o d i c  
T a b l e ,  e s p e c i a l l y  along t h e  row. 

5 .  Trans i t i on  elements a r e  p a r t i c u l a r l y  d e s i r a b l e  a s  s o l u t e  a d d i t i o n s  
because they  have vacant  i nne r  e l e c t r o n  s h e l l s  which make them more 
e f f e c t i v e  a s  s c a t t e r i n g  c e n t e r s .  

A bas ic  d i f f i c u l t y  t h a t  i s  encountered i n  t h e  development of l a t t i c e  
d i s o r d e r  by ex tens ive  s o l i d  s o l u t i o n  i s  t h a t ,  a s  t h e  tempera ture  i s  dec reased ,  
o rde r ing  t ransformat ions  may occur i n  o rde r  t o  lower t h e  f r e e  energy of t h e  sys- 
tem. Figure 2 shows a c l a s s i c  example of o rde r ing  i n  t h e  copper-gold system and 
how s i g n i f i c a n t  t h e s e  e f f e c t s  can be.  Note t h a t  i n  t h i s  c a s e ,  on ly  smal l  changes 
i n  compositions can r e s u l t  i n  t h e  presence o r  complete absence of t h i s  e f f e c t .  
The b a s i c  experimental o b j e c t i v e  i n  f ind ing  a l l o y s  wi th  h igh  r e s i s t a n c e s  and low 
TCR's, t he re fo re ,  reduces t o  t h e  d i scove ry  o f  s i n g l e  phase s o l i d  s o l u t i o n  a l l o y s  
which contain the  h i g h e s t  p o s s i b l e  concen t r a t ions  of t h e  most d i f f e r e n t  elements 
i n  t h e  l a r g e s t  v a r i e t y  p o s s i b l e  which w i l l  no t  undergo o rde r -d i so rde r  t y p e  reac- 
t i o n s  w i t h i n  t h e  tempera ture  and time l i m i t s  def ined  by t h e  program g o a l s .  

5.2 Alloy S e l e c t i o n  and Eva lua t ion  

In  order t o  e v a l u a t e  t h e  p o t e n t i a l  u s e f u l n e s s  of v a r i o u s  a l l o y  c a n d i d a t e s ,  a 
A number of key f a c t o r s  o r  proper- 

Because i t  was f e l t  t h a t  c e r t a i n  

numerical system of comparison w a s  developed. 
t i e s  f o r  t h i s  a p p l i c a t i o n  were i d e n t i f i e d ,  and h igh  o r  low numbers ass igned  
depending on t h e  d e s i r a b i l i t y  of t h a t  p rope r ty .  
a l l o y  f a c t o r s  were of more importance than  o t h e r s ,  t h e  numerical  importance of 
t h e  more s i g n i f i c a n t  p r o p e r t i e s  were extended i n  range so t h a t  g r e a t e r  weight ing  
f a c t o r s  could be a t t a i n e d .  Table I l i s t s  t h e  p r o p e r t i e s  used i n  t h i s  e v a l u a t i o n  
toge the r  with the  range of  r e l a t i v e  v a l u e s  which could be a s s igned .  
numerical value corresponded t o  a more d e s i r a b l e  va lue  f o r  t h e  proper ty .  

A l a r g e r  

Most of t h e  f a c t o r s  i n  Table I a r e  of obvious importance.  The Judgement 
Fac tor  w a s  a s  a more g e n e r a l  term which inc luded  such f a c t o r s  as r i s k s ,  d u c t i l i t y  
o r  b r i t t l e n e s s  and exper ience  wi th  t h e  a l l o y .  

When the upper v a l u e  of t h e s e  f a c t o r s  a r e  added t h e i r  sum i s  100. It was 
found, however, t h a t  t h e  numerical  s e p a r a t i o n  between t h e  sums of t h e  c a n d i d a t e s '  
p r o p e r t i e s  tended t o  be r e l a t i v e l y  smal l .  Each cand ida te  tended t o  s c o r e  we l l  i n  
some property which would then  o f f - s e t  a r e l a t i v e l y  poor s c o r e  i n  some o t h e r  
proper ty .  In o rde r  t o  provide  a c l e a r e r  s e p a r a t i o n  and t o  b e t t e r  account f o r  t h e  
f a c t  t h a t  the importance of a l l  t h e  f a c t o r s  are in t e rconnec ted ,  t h e  fo l lowing  
product ranking formula w a s  used wi th  t h e  symbols r e p r e s e n t i n g  t h e  p r o p e r t i e s  
l i s t e d  i n  Table I. 
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Tables of properties (or the best estimates of properties) for possible 
alloy systems were prepared from the available literature. The numerical assign- 
ment of values to the importance of the various factor was accomplished as a team 
project by Dr. E. Thompson, Dr. F. Lemkey and Dr. C. Hulse of UTRC and Prof. H. 
Nowotny of the Univ. of Conn. 
enclosed in parentheses and final rankings which involved more than two estimated 
properties were also enclosed in parentheses. The ten systems which obtained the 
highest rankings as a result of this initial effort are presented in Table 11. 
Also indicated are the final six alloy systems selected for further work by the 
NASA Project Manager after further discussion and review at NASA Lewis. 

Property factors based on estimated data were 

The Pt-Pd-Mo system obtained the highest ranking primarily because of its 
low value of TCR and because it was the final recommendation as the best poten- 
tial alloy by Bertodo after his extensive examination of many different alloy 
systems (Reference 7 ) .  The Pd-Ag-Mo system obtained the second highest ranking 
because of the very low values of TCR reported for the Pd-Ag system and because, 
it was felt, the further addition of Mo would lower the TCR even further and 
increase the resistivity up to acceptable levels. The Pt-1OW and the FeCrAl 
systems were included in the final selected group despite their initially lower 
rankings as potential candidates primarily because there was a considerable back- 
ground of experience with compositions in these systems and it was felt several 
systems of lower risk should be included. 

The time during which the resistance data were being obtained in this pro- 
gram also coincided with continuing improvements being made in our electrical 
resistance measurement and control system. Although specific tests were not made 
to evaluate and develop numerical measures of potential errors, the accuracy of 
the data was being improved as the testing programs continued from lower to higher 
sample numbers. There were no standard reference materials which could be 
thermally cycled in our equipment to directly evaluate the behavior of our 
measurement system. 
measurements in the FeCrAl system which were the most extensive and carried out 
over the longest span of time. 

These considerations apply most directly to the property 

The above comments are most relevant to our tests of cycle reproducibility 
and measurements of drift in electrical resistance over 3 hour periods at 1250K. 
In the cycle reproducibility testing, samples were heated and cooled at 10K/min 
and at 250K/min and the differences in resistance values at the end point in the 
different cycles noted at room temperature and at 1250K. In these tests and in 
the drift testing we estimate that the errors, which also include effects due to 
temperature measurement and furnace control, were reduced from approximately ' 

500 pQ/Q to k 50 vQ/Q as the program continued. We believe that the measurements 
were sufficiently accurate to make the necessary relative comparison between 
a1 loys . 
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The results of the experimental measurements in the subsequent Tables IV, 
VI, VI11 and X should be considered relative to the program goals which are to 
obtain measurement accuracies equal to or better than 10 percent of full scale 
for strains up to _+ 2,000 microstrain. Thus, at _+ 2,000 microstrain an error 
greater than f 200 microstrain from all sources would exceed the goal of the 
program. For a gage factor of 2.0, this would correspond to a change in I 

electrical resistivity of f 400 pQ/Q from all effects not caused by strain of the 
alloy which could be accounted €or by an apparent strain versus temperature 
correction curve. Typical temperature measurement uncertainties inside a gas 
turbine engine are approximately k 15K. I 

I The elastic and plastic strain capability data presented in these same I 

tables were taken from stress versus strain curves obtained at room temperature 
and at 1250K. The compositions of the drop cast rod used for these measurements 
are indicated in the tables. The elastic strain limit was taken as the maximum 
strain before the initial part of the stress/strain curves become nonlinear. The 
microstrain reported as ctotal was the strain at failure. 

5.3 Pt-Pd-Mo Alloys 

The compositions and the sample numbers of the different Pt-Pd-Mo type 
alloys which were made and evaluated in this program are given in Table 111. In 
the various systems studied, modification numbers refer to the various batch 
compositions examined. The sample numbers refer to specific samples made. These 
numbers will be the same unless more than one sample was made of the same com- 
position. A general summary of the properties measured is presented in Table 
IV . 

The change in AR/R for Modification 111 of this type versus temperature at 
10K/min and 250K/min is shown in Figure 3 .  This was the composition recommended 
by Bertodo (Reference 7 ) .  
stabilizer heat treatment because of the extremely low rates of diffusion calcu- 
lated for Mo even at extremely high temperatures. Electron microprobe measure- 
ments indicated that the composition was uniform within the ability of the elec- 
tron beam to detect differences. The curves in Figure 3 indicate that this 
material does not behave in the desired linear or reproducible manner. 

This alloy was not subjected to a high temperature 

Figure 4 shows the AR/R versus temperature behavior of Modification #4 which 
showed better reproducibility and a lower TCR. Figure 5 shows the drift of this 
alloy composition over a 3 hr. period in argon at 1250K. A transvese section 
through the surface of a sample of Modification #4 after 50 hr. in static air at 
1250K is shown in Figure 6 .  The depth of oxidation attack is of the order of 60 
microns. 



5.4 Pd-Ag-Mo and Nicrosil 

Examinations of arc-melted pads of Pd-Ag-Mo revealed globules of silver 
which had not dissolved in the rest of the melt. Additional work on this alloy 
system was discontinued after further experiments confirmed this lack of solubil- 
ity. 

Measurements of the resistivities of Nicrosil versus temperature showed 
nonlinear behavior versus temperature and relatively high TCR's. These results 
were confirmed in similar measurements made at NASA-Lewis. In view of these 
results, it was decided to discontinue further work on this system in favor of 
the other candidates. 

5.5 Pd-Cr Alloys 

The compositions and the sample number of the six different Pd-Cr alloys 
which were examined in this program are presented in Table V. 
of the properties obtained is given in Table VI. 

A general summary 

The change of hR/R for Pd-Cr alloy Modification 112 (Pd-13Cr) as a function 
of temperature is shown in Figure 7.  The behavior is very linear which indicates 
that this microstructure is very stable. The resistivity increase of about 15 
percent for this alloy when heated to about 1250K is very much greater than that 
observed for FeCrAl Modification 113 shown in Figure 8. The drift in resistance 
of this alloy over a 3 hr. period at 1250K in argon shown in Figure 8 was, 
however, very small. Figure 9 shows in cross-section the continuous oxide film 
which formed on the surface of this oxide during a 50 hr. 
1250K. 

exposure to air at 

5.6 Pt-W Alloys 

The compositions and the sample numbers of the six different Pt-W type 
alloys which were made and examined in this program are given in Table VII. A 
general summary of the properties obtained are presented in Table VIII. 

The change in AR/R for Modification 113 of this type alloy versus' temperature 
at 10K/min and 250K/min is shown in Figure 10. 
be sensitive to the rate of heating and cooling but some problems with reproduci- 
bility are indicated. Some change in behavior appears to be taking place above 
about 1200K. 
Modification #5, Pt-6.5W-6.5Re, is shown in Figure 11. This alloy shows linear 
behavior with temperature with only a slight indication that there might be a 
change occurring at the highest temperatures. The drift in the resistance of 
this alloy Over a 3 hr. 

This material does not appear to 

The AR/R versus temperature for the alloy judged to be the best, 

period at 1250K in argon is shown in Figure 12. 
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Figure 13 shows a transverse section of alloy Modification 85 after a 50 hr. 
exposure to static air at 1250K. The grain boundaries appear to have provided 
channels for the rapid diffusion of oxygen into the alloy. Figure 14 presents a 
Scanning Electron Microscope picture of the as oxidized surface of this alloy. 
It's surface has become faceted and contains many holes. 

5.7 FeCrAl Alloys 

Fourteen different FeCrAl alloy samples were prepared of 10 different com- 
~ positions. Table IX lists the compositions examined. A general summary of the 

data obtained is given in Table X. 

The various samples of this alloy type showed a wide variety of resistance 
versus temperature behaviors. Figures 15 through 19 show some of these curves 
for different compositions at different rates of heating and cooling. The least 
thermally sensitive composition, shown in Figure 18, was modification #3, Fe- 
10.6Cr-11.9 Al. Figure 20 shows a plot of the very low drift in resistivity that 
was observed for this sample over a three hour period in argon at 1250K. 

I 

Figure 21 shows curves of the changes in weight of some FeCrAl compositions 
over a 50 hour period in static air at 1250K. Alloy modification #3 was the only 
one, together with that of the Commercial Kanthal A-1 composition, which showed a 

appearing surfaces which indicated that their oxide coatings were not as adher- 
ent. 
removed from the furnace, in order to make room temperature weight measurements, 
and then again when they were suddenly replaced in the furnace. This thermal 
shocking may have encouraged spallation. Figure 22 shows a transverse view of 
the continuous oxide coating formed on the modification 413 oxidation sample. 
typical depth of oxidation attack was about 2 microns with a maximum penetration 
in certain places of about 13 microns. 

I positive weight gain with time. The other samples had more metallic, cleaner 

All of these samples experienced some thermal shock when they were suddenly 

The 

Figure 23 shows the thermal expansion of a sample of the same composition in 
Two cycles in air were run prior to the one shown in Figure 23 in order to air. 

I stabilize the system and confirm reproducibility. 

I 5 . 8  Sputtered Alloy Samples 

In order to carry out the third part of the test plan, alloys of two 
different FeCrAl compositions were prepared as resistor networks by sputtering on 
alumina substrates. The purpose of this effort was to demonstrate that for well- 
annealed and stabilized materials of the same compositions, the same electrical 
properties would be obtained for samples prepared using the sputtering technique 
as for those prepared by casting directly from the melt. 

I 
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The desired "corn cob" structure of an as-sputtered film of Fe-22.OCr-5.7Al- 
0.5Co (Kanthal A-1) is shown in the Scanning Electron Microscope photo of Figure 
24. The vague square in the upper picture was the result of an electron micro- 
probe composition scan. . The composition of the sputtered film was the same as 
that used to cast the target. Two of these samples were subsequently annealed 
and homogenized by heating for 3 hrs. in an argon atmosphere at 1473K. During 
this heat treatment, which was done in a furnace with a carbon resistor element, 
the samples were held inside an alumina tube which was wrapped in a Ta foil. 

l 

1 

of variation was not determined. Chromium especially had segregated into dis- 
Crete modules. This process may have occurred primarily during the heat treat- 

I 

A second resistance measurement conducted using tank argon (purity approxi- 
mately 1 to 2 ppm) introduced at one end of the heater tube gave only slightly 
better results. As a consequence of this oxidation, the thicknesses of the 
sputtered film was increased from 1.3 microns to 1.6 microns. The measured 
thicknesses of the oxidized materials were sharply greater just at the edges of 
the sputtered strips. 
from oxidation. 

This may have been caused by the volume increase resulting 

5.9 Mechanical Properties 

The mechanical properties of different alloys prepared by drop casting are 
presented in Table XI. The Pt-Pd-Mo Mod. 4 samples were too brittle and weak to 
test. An attempt to test this alloy at 1250K was terminated when the sample 
broke during heating because it was too weak to support even a small preload. 
Short time creep data at 1250K for different alloys is also presented in 
Table XI. Because of its' low strength, no attempts were made to obtain creep 
data for Pt-Pd-Mo Mod. 4. 
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6 .0  DISCUSSION OF RESULTS 

A comparison of t h e ,  f i n a l  b e s t  candida te  a l l o y s  of t h e  fou r  d i f f e r e n t  a l l o y  
types  with t h e i r  rankings a t  s e v e r a l  d i f f e r e n t  t i m e s  du r ing  t h e  program and a 
breakdown of t h e i r  v a r i o u s  f i n a l  p rope r ty  scores i s  p resen ted  i n  Table  XII. 
Since  rankings decreased wi th  inc reas ing  knowledge of t h e  a l l o y  p r o p e r t i e s ,  i t  
fo l lows  t h a t  t h e  a l l o y s  were not as good as w e  had guessed t h a t  they  were. A 
major reason f o r  t h e  changes which lowered the ranking of t h e  Pt-W and t h e  Pt-Pd- 
Mo type  a l l o y s  w a s  t h e  obse rva t ion  of apprec iab le  i n t e r n a l  o x i d a t i o n  a t t a c k  i n  
t h e s e  systems. Comparisons of t h e  depths  of ox ide  a t t a c k  i n  t h e s e  a l l o y s  i s  
presented  i n  Table  XI11 t oge the r  with some o the r  p r o p e r t i e s  of i n t e r e s t .  These 
p e n e t r a t i o n  d i s t a n c e s  a r e  s i g n i f i c a n t l y  deep so t h a t ,  even i f  a g r i d  of f i n e  
wires  were used t o  make t h e  senso r ,  s e r i o u s  changes i n  o v e r a l l  composition wi th  
t i m e  would be expected. 
forms a p r o t e c t i v e  oxide c o a t i n g  of C r p O j .  
metal  a l l o y ,  t h e  formation of a s t a b l e  oxide c o a t i n g  appears  t o  be a reasonable  
requirement of a good a l l o y  candida te .  

' 
1 

The t o p  cand ida te ,  Pd-Cr d id  b e t t e r  p a r t l y  because i t  
Thus, even i n  t h e  c a s e  of a prec ious  

I 
The measures of r e p r o d u c i b i l i t y  given in columns 3 and 4 of Tables  I V ,  V I ,  

V I 1 1  and X r e f e r  t o  t h e  a b i l i t y  of t h e s e  ma te r i a l s  t o  r e t u r n  t o  t h e  same va lues  
of t h e  r e s i s t i v i t y  a f t e r  h e a t i n g  and cooling t h a t  they  had o r i g i n a l l y .  
numbers a l s o  r e f l e c t  some i n a c c u r a c i e s  i n  our  measuring s y s t e m  so  t h a t  g r e a t  
emhasis should not be placed on t h e i r  absolu te  va lues .  The measurement system 
was q u i t e  a b l e ,  w e  f e e l ,  t o  compare the  behavior of d i f f e r e n t  a l l o y s  t o  i d e n t i f y  
optimum c a n d i d a t e s .  
p r i m a r i l y  because no s t anda rd  r e fe rence  ma te r i a l s  were a v a i l a b l e ,  w e  b e l i e v e  our  
measurement a c c u r a c i e s  were improved from about k 500 un/n t o  about 50 un/n as  
t h e  program progressed .  

These 

Although no d e f i n i t i v e  de t e rmina t ions  of accuracy were made, 

The r e s i s t a n c e  v e r s u s  temperature curves f o r  t h e  FeCrAl t y p e  a l l o y s ,  F igu res  
15 through 19, show marked v a r i a t i o n s  which i n d i c a t e  a h igh  s e n s i t i v i t y  t o  com- 
p o s i t i o n .  The equ i l ib r ium phase diagram (Reference 17) i n d i c a t e s  t h a t  w e  should 
be i n  a s i n g l e  phase,  s o l i d  s o l u t i o n  a r e a  f i e l d .  Naohara e t .  a l .  (References 18 
and 19) have desc r ibed  a v a r i e t y  of e f f e c t s  t h a t  can occur  when r a p i d l y  quenched 
a l l o y s  of t h e s e  types  are hea ted .  
n o n l i n e a r  behavior  were not  determined, they probably a r e  due t o  a series of 
r e l a t i v e l y  h igh  speed o rde r ing  e f f e c t s ,  some of which may be opposing each o t h e r ,  
which occur  over  a range of tempera tures .  
reason  f o r  t h e  change i n  s l o p e  of t h e  thermal expansion curve  which occurs  a t  
about 700K (F igu re  23) .  

Although t h e  reasons  f o r  our obse rva t ions  of 

These e f f e c t s  are probably a l s o  t h e  

F i g u r e  25 shows where some of these compositions occur  on t h e  t e r n a r y  phase 
diagram and d e f i n e s  an a r e a  i n s i d e  of which t h e  T C R ' s  from room temperature t o  
1250K have n e t  nega t ive  va lues .  Compositions which l i e  a t  t h e  edges of t h i s  area 

6-1 



w i l l  have average 
i n t e r e s t ,  i f  they  
changes i n  r e s i s t  

A comparison 
of Kanthal A-1 af 

TCR's of zero .  It i s  t h e s e  compositions which a r e  of most 
a r e  t h e  most r ep roduc ib le ,  s t a b l e ,  and show r e l a t i v e l y  l i n e a r  
v i t y  with tempera ture .  

of t h e  behavior  of t h e  FeCrAl Modif ica t ion  63 a l l o y  wi th  t h a t  
er a pre t rea tment  of 2 H r .  a t  1153K is shown i n  F igu re  26. The , 

Kanthal A-1 d a t a  were obta ined  from our p r i o r  work (Reference 4 ) .  The newer 
a l l o y  of Fe-10.6 Cr-11.9 A 1  has a lower s e n s i t i v i t y  t o  tempera tures  and a lower 
s e n s i t i v i t y  t o  t h e  r a t e  of temperature change over a wider range of tempera- 
t u r e s .  

I 

I 

I n  regard t o  t h e  r e s u l t s  ob ta ined  wi th  s p u t t e r e d  FeCrAl f i lms  i n  Sec t ion  
5.8,  t he  cracks i n  t h e  f i lms  shown i n  F igu re  24 may have been caused p r i m a r i l y  by 
t h e  requirement t h a t  t h e  f i lms  accommodate t h e  thermal expansion of t h e  alumina 
s u b s t r a t e .  Because t h e  thermal expansion of A 1 2 0 3  i s  less than  t h a t  of FeCrAl, 
w e  would expect t h e  d i f f e r e n t i a l  expansion f o r c e s  on t h e  metal  f i l m  t o  have been 
p r i m a r i l y  compressive du r ing  h e a t i n g  and t h a t  t h e  f i l m  would go i n t o  t e n s i o n  upon 
coo l ing  t o  c r e a t e  t h e  c racks  shown. I f  t h e  f i l m  had been depos i t ed  on a n i cke l -  
based supera l loy ,  e s p e c i a l l y  one wi th  a d u c t i l e  i n t e r l a y e r ,  t h e s e  c racks  might 
no t  have formed. 

The observa t ion  t h a t  t h e  measured th i cknesses  of t h e  oxid ized  m a t e r i a l s  were 
s h a r p l y  g r e a t e r  j u s t  a t  t h e  edges of t h e  s p u t t e r e d  s t r ip s ,  sugges t s  t h a t  t h e  
volumes of the oxides formed tend t o  be g r e a t e r  than  t h a t  of t h e  a l l o y  from which 
they  are formed. These volume d i f f e r e n c e s  may c r e a t e  s t r e s s e s  which would 
encourage s p a l l i n g  of t h e  f i l m s .  

It i s  a lso  f e l t  t h a t  i f  s p u t t e r e d  f i lms  a r e  t o  be used as s t r a i n  gages they  
should i n i t i a l l y  be much t h i c k e r  than  t h e s e  f i lms  were i n  o r d e r  t o  provide  a 
s u f f i c i e n t  amount of m a t e r i a l  t o  be consumed i n  forming a p r o t e c t i v e  oxide coat-  
i ng .  It was suspected t h a t  o x i d a t i o n  e f f e c t s  might a l s o  have been a t  l e a s t  
p a r t l y  respons ib le  f o r  t h e  non l inea r  behavior i n  t h e  d a t a  f o r  t h e  change i n  
r e s i s t a n c e  versus temperature of prec ious  metal a l l o y s  a t  h ighe r  tempera tures .  

The Pd-13 wtX C r  composition which w a s  s e l e c t e d  as t h e  b e s t  a l l o y  has  t h e  
p a r t i c u l a r  advantage t h a t  it i s  a r e l a t i v e l y  s i m p l e  system which forms an 
adhe ren t ,  p r o t e c t i v e  oxide s u r f a c e  f i l m  of C r 2 0 3 .  
oxide (2620 K) which, t o g e t h e r  w i th  alumina, forms on n i c k e l  and c o b a l t  base 
s u p e r a l l o y s  to  provide them wi th  t h e  necessary  c o r r o s i o n  r e s i s t a n c e  t o  f u n c t i o n  
e f f e c t i v e l y  in s ide  gas t u r b i n e  engines .  The l i n e a r  r e s i s t a n c e  v e r s u s  tempera ture  
behavior  observed, t o g e t h e r  w i th  t h e  ve ry  s m a l l  amounts of e l e c t r i c a l  d r i f t ,  
i n d i c a t e s  t ha t  t h e  chromium remains i n  complete s o l i d  s o l u t i o n  over t h e  tempera- 
t u r e  range of i n t e r e s t  and t h a t  i n t e r n a l  t i m e  dependent o r d e r i n g ,  e x s o l u t i o n  o r  
p r e c i p i t a t i o n  r e a c t i o n s  do not occur.  These f a c t o r s  suppor t  t h e  view t h a t  t h i s  
is a ve ry  s t a b l e  system a l l o y  system which should show good r e p r o d u c i b i l i t y  when 
used as a s t r a i n  gage element.  

Chromia is  a ve ry  h igh  me l t ing  
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7.0 SUMMARY OF RESULTS 

The available literature about strain gages and potential high temperature, 
alloy resistors was surveyed. A ranking system to evaluate various types of 
alloys was developed and used to select ten primary candidates. After further 
review at NASA, this list was reduced to six: 45Pt-45Pd-lOM0, 60Pd-30Ag-lOM0, 
Pd-30CrY Pt-lOW, Nicrosil and modifications near the Kanthal A-1 composition in 
the FeCrAl system. 

Test samples were prepared by arc-melting followed by drop casting into 
ceramic tubes and then polishing the resultant rods into flat strips. An appara- 
tus was developed which was capable of making measurements of resistivity at 
either constant temperatures or at cycle rates of from 50 to 250K/min from room 
temperatures to 1250K in a purged argon atmosphere. This resistance measurement 
facility was improved by the addition of a computer controlled data collection 
system during the latter part of the program. 

The Pd-Ag-Mo system was eliminated as a candidate system when problems of 
liquid immiscibiity were encountered. The Nicrosil system was also dropped 
because of its relatively high thermal sensitivity of resistance and its nonlin- 
ear response to temperature. The best alloy discovered was Pd-13Cr (in weight 
percent) with Fe-10.6Cr-11.9Al a close second. The Pd-13 Cr alloy had a very 
linear increase of resistivity with temperature which indicates that no ordering 
or other temperature dependent microstructural changes were taking place within 
the temperature range of interest. The results from the drift in resistance and 
the oxidation measurements at 1250 K were also particularly good. Alloys of Pt- 
6.5W-6.5Re and 45Pt-45Pd-lOMo were ranked behind these two alloys primarily 
because of the much larger degree of oxide penetration attack they showed after 
50 hours in static air at 1250K, typically 200 and 10 microns, respectively. The 
first and second place alloy candidates showed typical depths of oxidation attack 
of only about 2 microns. 

Measurements of the electrical resistances of a 1.6 micron thick sputtered 
FeCrAl sample indicated that (a) some oxidation could still occur in our measure- 
ment system despite it's being continually purged with argon, and (b) oxidation 
can be a serious problem for such thin films. If the sputtering technique is to 
be used to prepare strain gages, they should be made of appreciable thickness. 

Although many alloys were prepared and examined, additional work is advis- 
able in order to confirm these results with more accurate AR/R measurements and 
to optimize the properties of these alloys with ternary and higher element 
addit ions. 
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Property 

Repeatable Resistance 
(structural stability) 

Oxidation Resistance 

Resistivity 

Temperature Coefficient of 
Res is t iv i t y 

Elastic Range 

Thermal Expansion 
Match to Superalloys 

Judgement Fact or 

TABLE I 

ALLOY EVALUATION FACTORS 

Symbol 

RP 

0 

P 

TCR 

A €  

A= 

J.F. 

Value Range 

1-20 

1-18 

1-16 

1-14 

1-12 

1-10 

1-10 



A1 loy 

45 Pt-45 Pd-10 MO 

60 Pd-30 Ag-10 Ed0 

Nicrosil 

Pd-20 MO 

Pd-30 Cr 

Pd-12 W 

60 Pd-30 Au-10 NO 

Pt-10 w 

Pt-15 MO 

Modified FeCrAl 

TABLE I1 

BEST ALLOY CANDIDATES 

Ranking 
Score x 105 

148 

(118) 

111 

97 

94 

83 

79 

58 

51 

47 

NASA Approved 

Yes 

Yes 

Yes 

no 

Yes 

no 

no 

Yes 

no 

Yes 



TABLE 111 

THE COMPOSITIONS OF ALLOYS OF THE Pt-Pd-Mo 
. TYPE IN WEIGHT PERCENT 

Modif k a t  ion Number 
114 - #3 - #2 - Element I 1 

Pt 45 43 40 48 

Pd 45 43 48 40 

Mo 10 14 12 12 

Sample P t PdMo-1 -4 -6 -5 
Number -2 

-3 

115 

48 

40 

6 

6 

- 7  

- 
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TABLE V 

THE COMPOSITIONS OF STRAIN GAGE ALLOYS OF THE P d - C r  
' TYPE I N  WEIGHT PERCENT 

Element Y 1  

Pd 82.7 

C r  1 7 . 3  

- Mo 

- co 

- Wa 

- Ta 

S a m p l e  P d C r - 1  
Number 

Modification Number 
lf3 - #2 - 

87 74 

13 13 

13 - 

-2 -3 
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lf4 
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- 
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TABLE VI1 

THE COMPOSITIONS OF STRAIN GAGE ALLOYS OF THE Pt-W 
' TYPE I N  WEIGHT PERCENT 

Modification and Sample N u m b e r  
#4 P5 - - #3 - x2 - Element #l 

Pt 90.52 78 84 87 87 

W 9.48  22 16 13 6 . 5  

#6 

87 

6 . 5  

- 

6 . 5  
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TABLE XI11 

NON-ELECTRICAL PROPERTIES OF SELECTED CANDIDATE STRAIN GAGE ALLOYS 

A1 loy 

Pd-Cr 
(Mod#2 

F e C r A l  
(Modt3) 

P t - W  
(Mod%5 

P t  -Pd-Mo 
(Mod#4) 

Vicros i l  

Canthal A-1 

* Typical  
Jwr Kanthal 

4elt ing 
Poin t  

(K) 

1670 

1818 

2165 

,1985 

1710 

1780** 

CTE 
(ppm/K) 

13.8 

17.2 

9.5 

9.7 

14.3 

15 .O 

ICTE* from 
superal loy 
(ppm/K) 

-1.7 

+1.7 

-6 .O 

-5.8 

-1.3 

-0.5 

50 h r s  i n  s 

Wt change 
(mg / cm2 ) 

0.59 

0.33 

-1 .oo 

-1.50 

+O .97 

+O .23 

'CE of supera l loy  15.5 ppm/K, Al2o3=7 ppm/K 
:orp. handbook 

a t i c  a i r  at 1250K 
Oxide pene t r a t ion  

(microns) 
Typical  Maximum 

2 18 

2 13 

200 30 0 

10 64 
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(Pt-45Pd-lOM0, SAMPLE' PtPdMo-3, AS CAST, PRESOAKED 20 min IN APPARATUS AT 1250K, EST. ERROR 5 100 pprn) 
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Figure 3. Change in Average Electrical Resistance vs Temperature of PtPdMo Mod #1 at 
Different Rates of Heating and Cooling 
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Figure 4. Change in Average Electrical Resistance vs Temperature of PtPdMo Mod #4 at 
Different Rates of Heatina and Cooling 
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(Pt-40Pd-l2Mo, SAMPLE PtPdMo-5, AS CAST. PRESOAKED 20 rnin. IN APPARATUS AT 1250 K, EST. ERROR f 100 ppm) 
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Figure 5. Electrical Resistance Drift of PtPdMo Mod #4 Over a 3 Hour Period at 1250K 
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Figure 6. Transverse Section of Oxidized Surface of PtPdMo Mod #4, Pt-40Pd-12Mo 

84-9-35-22 



(Pd-l3Cr. SAMPLE PdCr-9. AS CAST, PRESOAKED 20 min IN APPARATUS AT 1250K. EST. ERROR f 50 ppmlK) 
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Figure 7. Change in Average Electrical Resistance vs Temperature of PdCr Mod #2 at 
Different Rates of Heating and Cooling 
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(Pd-t3Cr, SAMPLE PdCr-9, AS CAST , PRESOAKED 20 rnin. IN APPARATUS AT 1250 K, EST. ERROR k 50 pprnlK) 
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Figure 8. Electrical Resistance Drift of PdCr Mod #2 Over a 3 Hour Period at 1250 K in Air 
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Figure 9. Transverse Section of Oxidized Surface of PdCr Mod #2, Pd-l3Cr 
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(Pt-l6W, SAMPLE Pt-W-3, NO PRETEST TREATMENT, EST. ERROR -c50 ppm) 
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Figure 10. Change in Average Electrical Resistance vs Temperature of PtW, Mod #3 at 
Different Rates of Heating and Cooling 
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(Pt-6.5W-6.5Re, SAMPLE PtW-5, AS CAST, PRESOAKED 20 min IN APPARATUS AT 1250 K, EST. ERROR f 50 ppm) 
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Figure 77.  Change in Average Electrical Resistance vs Temperature of PtW Mod #5 
at Different Rates of Heating and Cooling 
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Figure 12. Electrical Resistance Drift of PtW Mod #5 Over a 3 Hour Period at 1250 K 
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Figure 13. Transverse Section of Oxidized Surface of PtW Mod #5, Pt-6.5W-6.5Re 
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AFTER 50 hrs, STATIC AIR, 1250 K 

Figure 14. Oxidized Surface of Pt W Mod #5, Pt-6.5W-6.5Re 
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(Fe-7.OCr-16.OAI SAMPLE K-12, PRETEST HEAT TREATMENT - 3 hrs IN ARGON AT 1473K. 
IN ALUMINA TUBE WRAPPED IN Ta FOIL, CARBON HEATER +PRESOAKED 20 mi IN APPARATUS AT 1250 K) 
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Figure 15. Change in Average Electrical Resistance vs Temperature of FeCrAl Mod #8 at 
Different Rates of Heating and Cooling at 50Klmin 
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Figure 16. Change in Average Electrical Resistance vs Temperature of FeCrAl 
Mod #7 at 50 deglmin 
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(Fe-13.OCr-24.OAI. SAMPLE K-14, AS CAST, PRESOAKED 20 rnin IN APPARATUS AT 1250K, 
WITH NEW COMPUTER SYSTEM, EST. ERROR f 100 pprn) 
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Figure 17. Change in Average Electrical Resistance vs Temperature of FeCrAl Mod #10 at 
Different Rates of Heating and Cooling 
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(Fe-10.6Cr-l1.9AI, SAMPLE K-5, PRETEST HEAT TREATMENT - 3 hrs IN ARGON AT 1473K, IN ALUMINA 
TUBE WRAPPED IN Ta FOIL, CARBON HEATER + PRESOAKED 20 min IN APPARATUS AT 1250K, 

WITH NEW COMPUTER AND ULTRA STABLE REFERENCE RESISTOR, EST. ERROR f 50 ppm) 
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Figure 18. Change in Average Electrical Resistance vs Temperature of FeCrAl Mod #3 at 
Different Rates of Heating and Cooling 
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Figure 19. Change in Average Electrical Resistance vs Temperature FeCrAl Mod #5 at 
Different Rates of Heating and Cooling 
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(Fe-IO.GCr-l1.9AI, SAMPLE K-5. PRETEST HEAT TREATMENT - 3 hrs IN ARGON AT 1473 K. 
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Figure 20. Electrical Resistance Drift of FeCrAl Mod #3 Over 3 Hour Period at 1250 K in Air 
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Figure 22. Transverse Section of Oxidized Surface of FeCrAl Mod #3, Fe-10.6Cr.11.9AI 
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Figure 24a. As Sputtered Kanthal A-1 Gage 

Figure 24b. Sputtered Kanthal A.1 Gage After 125O0K Exposure, Argon +Air 
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