199 research outputs found

    Can portable air quality monitors protect children from air pollution on the school run? An exploratory study

    Get PDF
    With air quality issues in urban areas garnering increasing media attention, concerned citizens are beginning to engage with air monitoring technology as a means of identifying and responding to the environmental risks posed. However, while much has been written about the accuracy of this sensing equipment, little research has been conducted into the effect it has on users. As such, this research deploys coping theory to explore the specific ways in which portable air quality sensors influence user behaviour. This is done using a qualitative exploratory design, targeting parents and carers of children on the school run. Drawing from survey and interview responses, the article illustrates the decision-making pathways underpinning engagement with monitors and the ways in which they influence beliefs and behaviours around air pollution. The study demonstrates that personal environmental monitors can play a role in protecting children from air pollution on the school run. They can raise awareness about air pollution and disrupt misconceptions about where it does and does not occur. They can also encourage the public to change their behaviour in an attempt to mitigate and manage risks. However, the findings additionally reveal that sensor technology does not generate a simple binary response among users, of behavioural change or not. When attempts at behavioural change fail to reduce risk, resulting negative feelings can lead to inaction. Hence, the relationship between the technology and the individual is entwined with various social circumstances often beyond a parent or carer’s control. Thus, top-down support aimed at tackling air pollution at source is essential if this bottom-up technology is to fulfil its full potential

    Paper Session II-A - Current Status of the Ariane 4 Program and of the Ariane 5 Development

    Get PDF
    This paper provides an overview of the commercial siruation of Arianespace, a general update regarding its technical and operational activities and its near and medium term prospects. A summary of the Ariane 4 track record is given and the latest improvement to its third staae the HIO III, is presented. Operational improvements that reduce the interval between two = \u27 consecutive laWlches are also addressed. The ratiollale for going to Ariane 5 is discussed and the current status of the Ariane 5 development program is reviewed. The Ariane 4 to Ariane 5 transition is outlined

    Wood burning stoves, participatory sensing, and ‘cold, stark data’

    Get PDF
    Wood burning stoves triple levels of particulate matter pollution inside the home. Using an exploratory research design informed by coping theory, this study illustrates how sensors revealing this reality fail to influence the perceptions and behaviours of stove users. After four weeks of participatory sensing, where laypersons used sensors to identify indoor air quality during stove use, the results show how monitoring technology pulls wider preconceptions into the data interpretation process. When faced with numerical data perceived as ambiguous, users draw on preconceptions that frame stoves in a positive light and make comparisons with other indoor emission sources believed to be harmless. This influences the data interpretation process and minimises the threat indicated by sensor technology. It is recommended that participatory sensing research give greater consideration to the role of data presentation in influencing user behaviour, while being more attentive to how socio-cultural knowledges enter the process of interpretation

    Quasar-galaxy and AGN-galaxy cross-correlations

    Get PDF
    We compute quasar-galaxy and AGN-galaxy cross-correlation functions for samples taken from the \cite{VCV98} catalog of quasars and active galaxies, using tracer galaxies taken from the Edinburgh/Durham Southern Catalog. The sample of active galaxy targets shows positive correlation at projected separations rp<6h−1Mpcr_p < 6 h^{-1} Mpc consistent with the usual power-law. On the other hand, we do not find a statistically significant positive quasar-galaxy correlation signal except in the range 3h−1Mpc<rp<6h−1Mpc3 h^{-1} Mpc < r_p < 6 h^{-1} Mpc where we find similar AGN-galaxy and quasar-galaxy correlation amplitudes. At separations rp<3h−1Mpcr_p<3 h^{-1} Mpc a strong decline of quasar-galaxy correlations is observed, suggesting a significant local influence of quasars in galaxy formation. In an attempt to reproduce the observed cross-correlation between quasars and galaxies, we have performed CDM cosmological hydrodynamical simulations and tested the viability of a scenario based on the model developed by \cite{silkrees98}. In this scheme a fraction of the energy released by quasars is considered to be transferred into the baryonic component of the intergalactic medium in the form of winds. The results of the simulations suggest that the shape of the observed quasar-galaxy cross-correlation function could be understood in a scenario where a substantial amount of energy is transferred to the medium at the redshift of maximum quasar activity.Comment: 11 pages, 9 figures. Accepted for publication in Ap

    Measuring index quality using random walks on the Web

    Get PDF
    A method to measure search engines, namely the quality of the pages in a search engine index, is presented. An algorithm is introduced to approximate the quality of an index by performing a random walk on the Web. This methodology is used to compare the index quality of several major search engines

    Indoor air pollution from residential stoves: examining the flooding of particulate matter into homes during real-world use

    Get PDF
    This study concerns the levels of particulate matter (PM2.5 and PM1) released by residential stoves inside the home during ‘real world’ use. Focusing on stoves that were certified by the UK’s Department of Environment, Food, and Rural Affairs (DEFRA), PM sensors were placed in the vicinity of 20 different stoves over four weeks, recording 260 uses. The participants completed a research diary in order to provide information on time lit, amount and type of fuel used, and duration of use, among other details. Multivariate statistical tools were used in order to analyse indoor PM concentrations, averages, intensities, and their relationship to aspects of stove management. The study has four core findings. First, the daily average indoor PM concentrations when a stove was used were higher for PM2.5 by 66.24% and PM1 by 69.49% than those of the non-use control group. Second, hourly peak averages are higher for PM2.5 by 55.34% and for PM1 by 57.09% than daily averages, showing that PM is ‘flooding’ into indoor areas through normal use. Third, the peaks that are derived from these ’flooding’ incidents are associated with the number of fuel pieces used and length of the burn period. This points to the opening of the stove door as a primary mechanism for introducing PM into the home. Finally, it demonstrates that the indoor air pollution being witnessed is not originating from outside the home. Taken together, the study demonstrates that people inside homes with a residential stove are at risk of exposure to high intensities of PM2.5 and PM1 within a short period of time through normal use. It is recommended that this risk be reflected in the testing and regulation of residential stoves

    On near-uniform URL sampling

    Get PDF
    We consider the problem of sampling URLs uniformly at random from the Web. A tool for sampling URLs uniformly can be used to estimate various properties of Web pages, such as the fraction of pages in various Internet domains or written in various languages. Moreover, uniform URL sampling can be used to determine the sizes of various search engines relative to the entire Web. In this paper, we consider sampling approaches based on random walks of the Web graph. In particular, we suggest ways of improving sampling based on random walks to make the samples closer to uniform. We suggest a natural test bed based on random graphs for testing the effectiveness of our procedures. We then use our sampling approach to estimate the distribution of pages over various Internet domains and to estimate the coverage of various search engine indexes

    Decision Tree Classifiers for Star/Galaxy Separation

    Full text link
    We study the star/galaxy classification efficiency of 13 different decision tree algorithms applied to photometric objects in the Sloan Digital Sky Survey Data Release Seven (SDSS DR7). Each algorithm is defined by a set of parameters which, when varied, produce different final classification trees. We extensively explore the parameter space of each algorithm, using the set of 884,126884,126 SDSS objects with spectroscopic data as the training set. The efficiency of star-galaxy separation is measured using the completeness function. We find that the Functional Tree algorithm (FT) yields the best results as measured by the mean completeness in two magnitude intervals: 14≀r≀2114\le r\le21 (85.285.2%) and r≄19r\ge19 (82.182.1%). We compare the performance of the tree generated with the optimal FT configuration to the classifications provided by the SDSS parametric classifier, 2DPHOT and Ball et al. (2006). We find that our FT classifier is comparable or better in completeness over the full magnitude range 15≀r≀2115\le r\le21, with much lower contamination than all but the Ball et al. classifier. At the faintest magnitudes (r>19r>19), our classifier is the only one able to maintain high completeness (>>80%) while still achieving low contamination (∌2.5\sim2.5%). Finally, we apply our FT classifier to separate stars from galaxies in the full set of 69,545,32669,545,326 SDSS photometric objects in the magnitude range 14≀r≀2114\le r\le21.Comment: Submitted to A

    The Northern Sky Optical Cluster Survey II: An Objective Cluster Catalog for 5800 Square Degrees

    Get PDF
    We present a new, objectively defined catalog of candidate galaxy clusters based on the galaxy catalogs from the Digitized Second Palomar Observatory Sky Survey (DPOSS). This cluster catalog, derived from the best calibrated plates in the high latitude (|b|>30) Northern Galactic Cap region, covers 5,800 square degrees, and contains 8,155 candidate clusters. A simple adaptive kernel density mapping technique, combined with the SExtractor object detection algorithm, is used to detect galaxy overdensities, which we identify as clusters. Simulations of the background galaxy distribution and clusters of varying richnesses and redshifts allow us to optimize detection parameters, and measure the completeness and contamination rates for our catalog. Cluster richnesses and photometric redshifts are measured, using integrated colors and magnitudes for each cluster. An extensive spectroscopic survey is used to confirm the photometric results. This catalog, with well-characterized sample properties, provides a sound basis for future studies of cluster physics and large scale structure.Comment: 49 pages, 16 figures. Accepted to AJ; appearing in April. Version with full resolution figures, and full length tables available at http://dposs.caltech.edu:8080/NoSOCS.htm

    Observational Mass-to-Light Ratio of Galaxy Systems: from Poor Groups to Rich Clusters

    Get PDF
    We study the mass-to-light ratio of galaxy systems from poor groups to rich clusters, and present for the first time a large database for useful comparisons with theoretical predictions. We extend a previous work, where B_j band luminosities and optical virial masses were analyzed for a sample of 89 clusters. Here we also consider a sample of 52 more clusters, 36 poor clusters, 7 rich groups, and two catalogs, of about 500 groups each, recently identified in the Nearby Optical Galaxy sample by using two different algorithms. We obtain the blue luminosity and virial mass for all systems considered. We devote a large effort to establishing the homogeneity of the resulting values, as well as to considering comparable physical regions, i.e. those included within the virial radius. By analyzing a fiducial, combined sample of 294 systems we find that the mass increases faster than the luminosity: the linear fit gives M\propto L_B^{1.34 \pm 0.03}, with a tendency for a steeper increase in the low--mass range. In agreement with the previous work, our present results are superior owing to the much higher statistical significance and the wider dynamical range covered (about 10^{12}-10^{15} M_solar). We present a comparison between our results and the theoretical predictions on the relation between M/L_B and halo mass, obtained by combining cosmological numerical simulations and semianalytic modeling of galaxy formation.Comment: 25 pages, 12 eps figures, accepted for publication in Ap
    • 

    corecore