1,233 research outputs found
Including Systematic Uncertainties in Confidence Interval Construction for Poisson Statistics
One way to incorporate systematic uncertainties into the calculation of
confidence intervals is by integrating over probability density functions
parametrizing the uncertainties. In this note we present a development of this
method which takes into account uncertainties in the prediction of background
processes, uncertainties in the signal detection efficiency and background
efficiency and allows for a correlation between the signal and background
detection efficiencies. We implement this method with the Feldman & Cousins
unified approach with and without conditioning. We present studies of coverage
for the Feldman & Cousins and Neyman ordering schemes. In particular, we
present two different types of coverage tests for the case where systematic
uncertainties are included. To illustrate the method we show the relative
effect of including systematic uncertainties the case of dark matter search as
performed by modern neutrino tel escopes.Comment: 23 pages, 10 figures, replaced to match published versio
The WNK-regulated SPAK/OSR1 kinases directly phosphorylate and inhibit the K+-Cl- co-transporters
This is the final version of the article. Available from Portland Press via the DOI in this record.There is another ORE record for this publication: http://hdl.handle.net/10871/32310Precise homoeostasis of the intracellular concentration of Cl- is achieved via the co-ordinated activities of the Cl- influx and efflux. We demonstrate that the WNK (WNK lysine-deficient protein kinase)-activated SPAK (SPS1-related proline/alanine-rich kinase)/OSR1 (oxidative stress-responsive kinase 1) known to directly phosphorylate and stimulate the N[K]CCs (Na+-K+ ion co-transporters), also promote inhibition of the KCCs (K+-Cl- co-transporters) by directly phosphorylating a recently described C-terminal threonine residue conserved in all KCC isoforms [Site-2 (Thr1048)]. First, we demonstrate that SPAK and OSR1, in the presence of the MO25 regulatory subunit, robustly phosphorylates all KCC isoforms at Site-2 in vitro. Secondly, STOCK1S-50699, a WNK pathway inhibitor, suppresses SPAK/OSR1 activation and KCC3A Site-2 phosphorylation with similar efficiency. Thirdly, in ES (embryonic stem) cells lacking SPAK/OSR1 activity, endogenous phosphorylation of KCC isoforms at Site-2 is abolished and these cells display elevated basal activity of 86Rb+ uptake that was not markedly stimulated further by hypotonic high K+ conditions, consistent with KCC3A activation. Fourthly, a tight correlation exists between SPAK/OSR1 activity and the magnitude of KCC3A Site-2 phosphorylation. Lastly, a Site-2 alanine KCC3A mutant preventing SPAK/OSR1 phosphorylation exhibits increased activity. We also observe that KCCs are directly phosphorylated by SPAK/OSR1, at a novel Site-3 (Thr5 in KCC1/KCC3 and Thr6 in KCC2/KCC4), and a previously recognized KCC3-specific residue, Site-4 (Ser96). These data demonstrate that the WNK-regulated SPAK/OSR1 kinases directly phosphorylate the N[K]CCs and KCCs, promoting their stimulation and inhibition respectively. Given these reciprocal actions with anticipated net effects of increasing Cl- influx, we propose that the targeting of WNK-SPAK/OSR1 with kinase inhibitors might be a novel potent strategy to enhance cellular Cl- extrusion, with potential implications for the therapeutic modulation of epithelial and neuronal ion transport in human disease states.This work was supported by the Medical Research Council and the Wellcome Trust [grant number 091415] as well as the pharmaceutical companies supporting the Division of Signal Transduction Therapy Unit (AstraZeneca, Boehringer-Ingelheim, GlaxoSmithKline, Merck KgaA, Janssen Pharmaceutica and Pfizer). K.T.K. is supported by the Manton Center for Orphan Diseases at Children's Hospital Boston at Harvard Medical School, and the Harvard/MIT Joint Research Grants Program in Basic Neuroscience
The AMANDA Neutrino Telescope and the Indirect Search for Dark Matter
With an effective telescope area of order 10^4 m^2, a threshold of ~50 GeV
and a pointing accuracy of 2.5 degrees, the AMANDA detector represents the
first of a new generation of high energy neutrino telescopes, reaching a scale
envisaged over 25 years ago. We describe its performance, focussing on the
capability to detect halo dark matter particles via their annihilation into
neutrinos.Comment: Latex2.09, 16 pages, uses epsf.sty to place 15 postscript figures.
Talk presented at the 3rd International Symposium on Sources and Detection of
Dark Matter in the Universe (DM98), Santa Monica, California, Feb. 199
Cervical electrical neuromodulation effectively enhances hand motor output in healthy subjects by engaging a use-dependent intervention
Electrical enabling motor control (eEmc) through transcutaneous spinal cord stimulation is a non-invasive method that can modify the functional state of the sensory-motor system. We hypothesize that eEmc delivery, together with hand training, improves hand function in healthy subjects more than either intervention alone by inducing plastic changes at spinal and cortical levels. Ten voluntary participants were included in the following three interventions: (i) hand grip training, (ii) eEmc, and (iii) eEmc with hand training. Functional evaluation included the box and blocks test (BBT) and hand grip maximum voluntary contraction (MVC), spinal and cortical motor evoked potential (sMEP and cMEP), and resting motor thresholds (RMT), short interval intracortical inhibition (SICI), and F wave in the abductor pollicis brevis muscle. eEmc combined with hand training retained MVC and increased F wave amplitude and persistency, reduced cortical RMT and facilitated cMEP amplitude. In contrast, eEmc alone only increased F wave amplitude, whereas hand training alone reduced MVC and increased cortical RMT and SICI. In conclusion, eEmc combined with hand grip training enhanced hand motor output and induced plastic changes at spinal and cortical level in healthy subjects when compared to either intervention alone. These data suggest that electrical neuromodulation changes spinal and, perhaps, supraspinal networks to a more malleable state, while a concomitant use-dependent mechanism drives these networks to a higher functional state
Transcutaneous Electrical Neuromodulation of the Cervical Spinal Cord Depends Both on the Stimulation Intensity and the Degree of Voluntary Activity for Training. A Pilot Study
Electrical enabling motor control (eEmc) through transcutaneous spinal cord stimulation offers promise in improving hand function. However, it is still unknown which stimulus intensity or which muscle force level could be better for this improvement. Nine healthy individuals received the following interventions: (i) eEmc intensities at 80%, 90% and 110% of abductor pollicis brevis motor threshold combined with hand training consisting in 100% handgrip strength; (ii) hand training consisting in 100% and 50% of maximal handgrip strength combined with 90% eEmc intensity. The evaluations included box and blocks test (BBT), maximal voluntary contraction (MVC), F wave persistency, F/M ratio, spinal and cortical motor evoked potentials (MEP), recruitment curves of spinal MEP and cortical MEP and short-interval intracortical inhibition. The results showed that: (i) 90% eEmc intensity increased BBT, MVC, F wave persistency, F/M ratio and cortical MEP recruitment curve; 110% eEmc intensity increased BBT, F wave persistency and cortical MEP and recruitment curve of cortical MEP; (ii) 100% handgrip strength training significantly modulated MVC, F wave persistency, F/M wave and cortical MEP recruitment curve in comparison to 50% handgrip strength. In conclusion, eEmc intensity and muscle strength during training both influence the results for neuromodulation at the cervical level
The AMANDA Neutrino Telescope: Principle of Operation and First Results
AMANDA is a high-energy neutrino telescope presently under construction at
the geographical South Pole. In the Antarctic summer 1995/96, an array of 80
optical modules (OMs) arranged on 4 strings (AMANDA-B4) was deployed at depths
between 1.5 and 2 km. In this paper we describe the design and performance of
the AMANDA-B4 prototype, based on data collected between February and November
1996. Monte Carlo simulations of the detector response to down-going
atmospheric muon tracks show that the global behavior of the detector is
understood. We describe the data analysis method and present first results on
atmospheric muon reconstruction and separation of neutrino candidates. The
AMANDA array was upgraded with 216 OMs on 6 new strings in 1996/97
(AMANDA-B10), and 122 additional OMs on 3 strings in 1997/98.Comment: 36 pages, 23 figures, submitted to Astroparticle Physic
Low-mass e+e- pair production in 158 A GeV Pb-Au collisions at the CERN SPS, its dependence on multiplicity and transverse momentum
We report a measurement of low-mass electron pairs observed in 158
GeV/nucleon Pb-Au collisions. The pair yield integrated over the range of
invariant masses 0.2 < m < 2.0 GeV is enhanced by a factor of 3.5 +/- 0.4
(stat) +/- 0.9 (syst) over the expectation from neutral meson decays. As
observed previously in S-Au collisions, the enhancement is most pronounced in
the invariant-mass region 300-700 MeV. For Pb-Au we find evidence for a strong
increase of the enhancement with centrality. In addition, we show that the
enhancement covers a wide range in transverse momentum, but is largest at the
lowest observed pt.Comment: 17 pages, 4 figures, submitted to Phys.Lett.
Tribimaximal Neutrino Mixing and a Relation Between Neutrino- and Charged Lepton-Mass Spectra
Brannen has recently pointed out that the observed charged lepton masses
satisfy the relation m_e +m_\mu +m_\tau = {2/3}
(\sqrt{m_e}+\sqrt{m_\mu}+\sqrt{m_\tau})^2, while the observed neutrino masses
satisfy the relation m_{\nu 1} +m_{\nu 2} +m_{\nu 3} = {2/3} (-\sqrt{m_{\nu
1}}+\sqrt{m_{\nu 2}}+\sqrt{m_{\nu 3}})^2. It is discussed what neutrino Yukawa
interaction form is favorable if we take the fact pointed out by Brannen
seriously.Comment: 13 pages, presentation modifie
The AMANDA Neutrino Telescope
With an effective telescope area of order m for TeV neutrinos, a
threshold near 50 GeV and a pointing accuracy of 2.5 degrees per muon
track, the AMANDA detector represents the first of a new generation of high
energy neutrino telescopes, reaching a scale envisaged over 25 years ago. We
describe early results on the calibration of natural deep ice as a particle
detector as well as on AMANDA's performance as a neutrino telescope.Comment: 12 pages, Latex2.09, uses espcrc2.sty and epsf.sty, 13 postscript
files included. Talk presented at the 18th International Conference on
Neutrino Physics and Astrophysics (Neutrino 98), Takayama, Japan, June 199
Limits on diffuse fluxes of high energy extraterrestrial neutrinos with the AMANDA-B10 detector
Data from the AMANDA-B10 detector taken during the austral winter of 1997
have been searched for a diffuse flux of high energy extraterrestrial
muon-neutrinos, as predicted from, e.g., the sum of all active galaxies in the
universe. This search yielded no excess events above those expected from the
background atmospheric neutrinos, leading to upper limits on the
extraterrestrial neutrino flux. For an assumed E^-2 spectrum, a 90% classical
confidence level upper limit has been placed at a level E^2 Phi(E) = 8.4 x
10^-7 GeV cm^-2 s^-1 sr^-1 (for a predominant neutrino energy range 6-1000 TeV)
which is the most restrictive bound placed by any neutrino detector. When
specific predicted spectral forms are considered, it is found that some are
excluded.Comment: Submitted to Physical Review Letter
- …