283 research outputs found

    Low temperature resistivity in a nearly half-metallic ferromagnet

    Full text link
    We consider electron transport in a nearly half-metallic ferromagnet, in which the minority spin electrons close to the band edge at the Fermi energy are Anderson-localized due to disorder. For the case of spin-flip scattering of the conduction electrons due to the absorption and emission of magnons, the Boltzmann equation is exactly soluble to the linear order. From this solution we calculate the temperature dependence of the resistivity due to single magnon processes at sufficiently low temperature, namely kBTD/L2k_BT\ll D/L^2, where LL is the Anderson localization length and DD is the magnon stiffness. And depending on the details of the minority spin density of states at the Fermi level, we find a T1.5T^{1.5} or T2T^{2} scaling behavior for resistivity. Relevance to the doped perovskite manganite systems is discussed

    Magnetoresistance of metallic perovskite oxide LaNiO3δ_{3-\delta}

    Full text link
    We report a study of the magnetoresistance (MR) of the metallic perovskite oxide LaNiO3δ_{3-\delta} as a function of the oxygen stoichiometry δ\delta (δ\delta \leq 0.14), magnetic field (H 6T\leq 6T) and temperature (1.5K \leq T \leq 25K). We find a strong dependence of the nature of MR on the oxygen stoichiometry. The MR at low temperatures change from positive to negative as the sample becomes more oxygen deficient (i.e, δ\delta increases). Some of the samples which are more resistive, show a resistivity minima at TminT_{min} \approx 20K. We find that in these samples the MR is positive at T > TminT_{min} and negative for T < TminT_{min}. We conclude that in the absence of strong magnetic interaction, the negative MR in these oxides can arise from weak localisation effects.Comment: 10 pages in REVTeX format, 4 eps fig

    Self Injection length in La0.7 Ca0.3 Mno3-YBa 2Cu3O7-d ferromagnet- superconductor multi layer thin films

    Get PDF
    We have carried out extensive studies on the self-injection problem in barrierless heterojunctions between La0.7Ca0.3MnO3 (LCMO) and YBa2Cu3O7-d (YBCO). The heterojunctions were grown in situ by sequentially growing LCMO and YBCO films on LaAlO3 (LAO) substrate using a pulsed laser deposition (PLD) system. YBCO micro-bridges with 64 microns width were patterned both on the LAO (control) and LCMO side of the substrate. Critical current, Ic, was measured at 77K on both the control side as well as the LCMO side for different YBCO film thickness. It was observed that while the control side showed a Jc of ~2 x 10E6 A/ cm2 the LCMO side showed about half the value for the same thickness (1800 A). The difference in Jc indicates that a certain thickness of YBCO has become 'effectively' normal due to self-injection. From the measurement of Jc at two different thickness' (1800 A and 1500 A) of YBCO both on the LAO as well as the LCMO side, the value of self-injection length (at 77K) was estimated to be ~900 A self-injection length has been quantified. A control experiment carried out with LaNiO3 deposited by PLD on YBCO did not show any evidence of self-injection.Comment: 6 pages, one figure in .ps forma

    Electronic structure, magnetism and superconductivity of MgCNi3_{3}

    Full text link
    The electronic structure of the newly discovered superconducting perovskite MgCNi3_3 is calculated using the LMTO and KKR methods. The states near the Fermi energy are found to be dominated by Ni-d. The Stoner factor is low while the electron-phonon coupling constant is estimated to be about 0.7, which suggests that the material is a conventional type of superconductor where TC_C is not affected by magnetic interactions. However, the proximity of the Fermi energy to a large peak in the density of states in conjunction with the reported non-stoichiometry of the compound, has consequences for the stability of the results.Comment: 3 pages, 4 figure

    Optical Spectra in the Ferromagnetic States near the Charge Ordering

    Full text link
    The optical conductivity is studied numerically for the ferromagnetic metallic state close to the charge ordering observed in perovskite manganites.Comment: 11 pages, Latex, 6 ps figure

    Exchange Field Induced Magnetoresistance in Colossal Magnetoresistance Manganites

    Full text link
    The effect of an exchange field on electrical transport in thin films of metallic ferromagnetic manganites has been investigated. The exchange field was induced both by direct exchange coupling in a ferromagnet/antiferromagnet multilayer and by indirect exchange interaction in a ferromagnet/paramagnet superlattice. The electrical resistance of the manganite layers was found to be determined by the absolute value of the vector sum of the effective exchange field and the external magnetic field.Comment: 5 pages, 4 figure

    Room temperature magnetic entropy change and magnetoresistance in La_{0.70}(Ca_{0.30-x}Sr_x)MnO_3:Ag 10% (x = 0.0-0.10)

    Full text link
    The magnetic and magnetocaloric properties of polycrystalline La0.70(Ca0.30-xSrx)MnO3:Ag 10% manganite have been investigated. All the compositions are crystallized in single phase orthorhombic Pbnm space group. Both, the Insulator-Metal transition temperature (TIM) and Curie temperature (Tc) are observed at 298 K for x = 0.10 composition. Though both TIM and Tc are nearly unchanged with Ag addition, the MR is slightly improved. The MR at 300 K is found to be as large as 31% with magnetic field change of 1Tesla, whereas it reaches up to 49% at magnetic field of 3Tesla for La0.70Ca0.20Sr0.10MnO3:Ag0.10 sample. The maximum entropy change (\DeltaSMmax) is 7.6 J.Kg-1.K-1 upon the magnetic field change of 5Tesla, near its Tc (300.5 K). The La0.70Ca0.20Sr0.10MnO3:Ag0.10 sample having good MR (31%1Tesla, 49%3Tesla) and reasonable change in magnetic entropy (7.6 J.Kg-1.K-1, 5 Tesla) at 300 K can be a potential magnetic refrigerant material at ambient temperatures.Comment: 11 pages text + Figs comments/suggestions ([email protected]

    Ferromagnetic transition in a double-exchange system

    Full text link
    We study ferromagnetic transition in three-dimensional double-exchange model. The influence of strong spin fluctuations on conduction electrons is described in coherent potential approximation. In the framework of thermodynamic approach we construct for the system "electrons (in a disordered spin configuration) + spins" the Landau functional, from the analysis of which critical temperature of ferromagnetic transition is calculated.Comment: 4 pages, 1 eps figure, LaTeX2e, RevTeX. References added, text change

    The Density of States of hole-doped Manganites: A Scanning Tunneling Microscopy/Spectroscopy study

    Get PDF
    Variable temperature scanning tunneling microscopy/spectroscopy studies on single crystals and epitaxial thin films of hole-doped manganites, which show colossal magnetoresistance, have been done. We have investigated the variation of the density of states, at and near the Fermi energy (EfE_f), as a function of temperature. Simple calculations have been carried out, to find out the effect of temperature on the tunneling spectra and extract the variation of density of states with temperature, from the observed data. We also report here, atomic resolution images, on the single crystals and larger range images showing the growth patterns on thin films. Our investigation shows unambiguously that there is a rapid variation in density of states for temperatures near the Curie temperature (TcT_c). While for temperatures below TcT_c, a finite DOS is observed at EfE_f, for temperatures near TcT_c a hard gap opens up in the density of states near EfE_f. For temperatures much higher than TcT_c, this gap most likely gives way to a soft gap. The observed hard gap for temperatures near TcT_c, is somewhat higher than the transport gap for all the materials. For different materials, we find that the magnitude of the hard gap decreases as the TcT_c of the material increases and eventually, for materials with a TcT_c close to 400 K, the value of the gap approaches zero.Comment: 9 pages RevTeX, 12 postscript figures, 1 table included in text, submitted to Physical Review

    Atomic-scale images of charge ordering in a mixed-valence manganite

    Get PDF
    Transition-metal perovskite oxides exhibit a wide range of extraordinary but imperfectly understood phenomena. Charge, spin, orbital, and lattice degrees of freedom all undergo order-disorder transitions in regimes not far from where the best-known of these phenomena, namely high-temperature superconductivity of the copper oxides, and the 'colossal' magnetoresistance of the manganese oxides, occur. Mostly diffraction techniques, sensitive either to the spin or the ionic core, have been used to measure the order. Unfortunately, because they are only weakly sensitive to valence electrons and yield superposition of signals from distinct mesoscopic phases, they cannot directly image mesoscopic phase coexistence and charge ordering, two key features of the manganites. Here we describe the first experiment to image charge ordering and phase separation in real space with atomic-scale resolution in a transition metal oxide. Our scanning tunneling microscopy (STM) data show that charge order is correlated with structural order, as well as with whether the material is locally metallic or insulating, thus giving an atomic-scale basis for descriptions of the manganites as mixtures of electronically and structurally distinct phases.Comment: 8 pages, 4 figures, 19 reference
    corecore