27 research outputs found

    Synthesis of marmycin A and investigation into its cellular activity

    Get PDF
    Anthracyclines such as doxorubicin are used extensively in the treatment of cancers. Anthraquinone-related angucyclines also exhibit antiproliferative properties and have been proposed to operate via similar mechanisms, including direct genome targeting. Here, we report the chemical synthesis of marmycin A and the study of its cellular activity. The aromatic core was constructed by means of a one-pot multistep reaction comprising a regioselective Diels-Alder cycloaddition, and the complex sugar backbone was introduced through a copper-catalysed Ullmann cross-coupling, followed by a challenging Friedel-Crafts cyclization. Remarkably, fluorescence microscopy revealed that marmycin A does not target the nucleus but instead accumulates in lysosomes, thereby promoting cell death independently of genome targeting. Furthermore, a synthetic dimer of marmycin A and the lysosome-targeting agent artesunate exhibited a synergistic activity against the invasive MDA-MB-231 cancer cell line. These findings shed light on the elusive pathways through which anthraquinone derivatives act in cells, pointing towards unanticipated biological and therapeutic applications

    Epigenetics of Delirium and Aging: Potential Role of DNA Methylation Change on Cytokine Genes in Glia and Blood Along With Aging

    Get PDF
    Background: Delirium in elderly patients is common and dangerous. Major risk factors include aging and exogenous insults, such as infection or surgery. In animal models, aging enhances pro-inflammatory cytokine release from microglia in response to exogenous insults. The epigenetic mechanism DNA methylation (DNAm) regulates gene expression and changes with age. Older individuals may have methylation changes that influence the increased cytokine upon insult, but the degree to which aging affects DNAm of cytokine genes is not fully understood.Methods: The relationship between DNAm and aging of pro-inflammatory cytokine genes (TNF-alpha, IL1-beta, IL-6) was investigated using methylation array data in two cohorts. Brain and blood samples were collected from a neurosurgery cohort (NSG) of 21 subjects who underwent brain resection. A second cohort, the Grady Trauma Project (GTP), included blood samples from 265 subjects.Results: In the NSG cohort, a significant negative correlation between age and DNAm in brain was found at a CpG in IL-6. With the GTP dataset, significant negative correlations between age and DNAm were seen at most of the CpGs in TNF-alpha. Also, TNF-Alpha expression increases with age. These GTP DNAm correlations were also nominally significant in NSG blood samples. In neuronal negative NSG brain tissue, a similar negative trend was observed.Conclusions: With aging, a decrease in DNAm of cytokines gene CpGs in glia and blood was seen. As this can affect their expression, additional research is needed to fully elucidate the role of DNAm in aging and how it may influence the pathogenesis of delirium

    Renal cell carcinoma primary cultures maintain genomic and phenotypic profile of parental tumor tissues

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Clear cell renal cell carcinoma (ccRCC) is characterized by recurrent copy number alterations (CNAs) and loss of heterozygosity (LOH), which may have potential diagnostic and prognostic applications. Here, we explored whether ccRCC primary cultures, established from surgical tumor specimens, maintain the DNA profile of parental tumor tissues allowing a more confident CNAs and LOH discrimination with respect to the original tissues.</p> <p>Methods</p> <p>We established a collection of 9 phenotypically well-characterized ccRCC primary cell cultures. Using the Affymetrix SNP array technology, we performed the genome-wide copy number (CN) profiling of both cultures and corresponding tumor tissues. Global concordance for each culture/tissue pair was assayed evaluating the correlations between whole-genome CN profiles and SNP allelic calls. CN analysis was performed using the two CNAG v3.0 and Partek software, and comparing results returned by two different algorithms (Hidden Markov Model and Genomic Segmentation).</p> <p>Results</p> <p>A very good overlap between the CNAs of each culture and corresponding tissue was observed. The finding, reinforced by high whole-genome CN correlations and SNP call concordances, provided evidence that each culture was derived from its corresponding tissue and maintained the genomic alterations of parental tumor. In addition, primary culture DNA profile remained stable for at least 3 weeks, till to third passage. These cultures showed a greater cell homogeneity and enrichment in tumor component than original tissues, thus enabling a better discrimination of CNAs and LOH. Especially for hemizygous deletions, primary cultures presented more evident CN losses, typically accompanied by LOH; differently, in original tissues the intensity of these deletions was weaken by normal cell contamination and LOH calls were missed.</p> <p>Conclusions</p> <p>ccRCC primary cultures are a reliable <it>in vitro </it>model, well-reproducing original tumor genetics and phenotype, potentially useful for future functional approaches aimed to study genes or pathways involved in ccRCC etiopathogenesis and to identify novel clinical markers or therapeutic targets. Moreover, SNP array technology proved to be a powerful tool to better define the cell composition and homogeneity of RCC primary cultures.</p
    corecore