530 research outputs found

    Mapping of 2+1-dimensional Kardar-Parisi-Zhang growth onto a driven lattice gas model of dimer

    Full text link
    We show that a 2+1 dimensional discrete surface growth model exhibiting Kardar-Parisi-Zhang (KPZ) class scaling can be mapped onto a two dimensional conserved lattice gas model of directed dimers. In case of KPZ height anisotropy the dimers follow driven diffusive motion. We confirm by numerical simulations that the scaling exponents of the dimer model are in agreement with those of the 2+1 dimensional KPZ class. This opens up the possibility of analyzing growth models via reaction-diffusion models, which allow much more efficient computer simulations.Comment: 5 pages, 4 figures, final form to appear in PR

    Two-dimensional shear modulus of a Langmuir foam

    Full text link
    We deform a two-dimensional (2D) foam, created in a Langmuir monolayer, by applying a mechanical perturbation, and simultaneously image it by Brewster angle microscopy. We determine the foam stress tensor (through a determination of the 2D gas-liquid line tension, 2.35 ±\pm 0.4 pJ\cdotm1^{-1}) and the statistical strain tensor, by analyzing the images of the deformed structure. We deduce the 2D shear modulus of the foam, μ=38±3nNm1\mu= 38 \pm 3 \mathrm{nN}\cdot \mathrm{m}^{-1}. The foam effective rigidity is predicted to be 35±3nNm1 35 \pm 3 \mathrm {nN}\cdot \mathrm {m}^{- 1}, which agrees with the value 37.5±0.8nNm137.5 \pm 0.8 \mathrm {nN}\cdot \mathrm {m}^{-1} obtained in an independent mechanical measurement.Comment: submitted May 12, 2003 ; resubmitted Sept 9, 200

    Immunoadsorption of agonistic autoantibodies against α1-adrenergic receptors in patients with mild to moderate dementia

    Get PDF
    Dementia has been shown to be associated with agonistic autoantibodies. The deleterious action of autoantibodies on the {alpha}1-adrenergic receptor for brain vasculature has been demonstrated in animal studies. In the current study, 169 patients with dementia were screened for the presence of agonistic autoantibodies. 47% of patients suffering from mild to moderate Alzheimer's disease and/or vascular dementia carried these autoantibodies. Eight patients positive for autoantibodies underwent immunoadsorption. Patients treated on four consecutive days were subsequently negative for autoantibodies and displayed stabilization of cognitive and mental condition during 12-18 months' follow-up. In patients treated for 2-3 days, autoantibodies were reduced by only 78%. They suffered a rebound of autoantibodies during follow-up, benefited from immunoadsorption too, but their mental parameters worsened. We provide first data on the clinical relevance of agonistic autoantibodies in dementia and show that immunoadsorption is safe and efficient in removing autoantibodies with overall benefits for patients

    New insights into the genetic control of gene expression using a Bayesian multi-tissue approach.

    Get PDF
    The majority of expression quantitative trait locus (eQTL) studies have been carried out in single tissues or cell types, using methods that ignore information shared across tissues. Although global analysis of RNA expression in multiple tissues is now feasible, few integrated statistical frameworks for joint analysis of gene expression across tissues combined with simultaneous analysis of multiple genetic variants have been developed to date. Here, we propose Sparse Bayesian Regression models for mapping eQTLs within individual tissues and simultaneously across tissues. Testing these on a set of 2,000 genes in four tissues, we demonstrate that our methods are more powerful than traditional approaches in revealing the true complexity of the eQTL landscape at the systems-level. Highlighting the power of our method, we identified a two-eQTL model (cis/trans) for the Hopx gene that was experimentally validated and was not detected by conventional approaches. We showed common genetic regulation of gene expression across four tissues for ∼27% of transcripts, providing >5 fold increase in eQTLs detection when compared with single tissue analyses at 5% FDR level. These findings provide a new opportunity to uncover complex genetic regulatory mechanisms controlling global gene expression while the generality of our modelling approach makes it adaptable to other model systems and humans, with broad application to analysis of multiple intermediate and whole-body phenotypes

    An MRI evaluation of grey matter damage in African Americans with MS

    Get PDF
    Objective: Multiple sclerosis (MS) is less prevalent in African Americans (AAs) than Caucasians (CAs) but in the former the disease course tends to be more severe. In order to clarify the MRI correlates of disease severity in AAs, we performed a multimodal brain MRI study to comprehensively assess the extent of grey matter (GM) damage and the degree of functional adaptation to structural damage in AAs with MS. Methods: In this cross-sectional study, we characterized GM damage in terms of focal lesions and volume loss and functional adaptation during the execution of a simple motor task on a sample of 20 AAs and 20 CAs with MS and 20 healthy controls (CTRLs). Results: In AAs, we observed a wider range of EDSS scores than CAs, with multisystem involvement being more likely in AAs (p < 0.01). While no significant differences were detected in lesion loads and global brain volumes, AAs showed regional atrophy in the posterior lobules of cerebellum, temporo-occipital and frontal regions in comparison with CAs (p < 0.01), with cerebellar atrophy being the best metric in differentiating AAs from CAs (p = 0.007, AUC = 0.96 and p = 0.005, AUC = 0.96, respectively for right and left cerebellar clusters). In AAs, the functional analysis of cortical activations showed an increase in task-related activation of areas involved in high level processing and a decreased activation in the medial prefrontal cortex compared to CAs. Interpretation: In our study, the direct comparison of AAs and CAs points to cerebellar atrophy as the main difference between subgroups

    Laser induced sponge-like Si in Si-rich oxides for photovoltaics

    Get PDF
    We show that a sponge-like structure of interconnected Si nanowires embedded in a dielectric matrix can be obtained by laser annealing of silicon rich oxides (SRO). Due to quantum confinement, the large bandgap displayed by these percolated nanostructures can be utilized as a tandem stage in 3rd generation thin-film solar cells. Well passivated by the SiO2 dielectric matrix, they are expected to overcome the difficulty of carrier separation encountered in the case of isolated crystalline quantum dots. In this study PECVD grown SRO were irradiated by a cw Ar+ laser. Raman spectroscopy has been used to assess the crystallinity of the Si nanostructures and thus to optimize the annealing conditions as dwell times and power densities. In addition, Si plasmon imaging in the transmission electron microscope was applied to identify the sponge-like structure of phase-separated silicon. © 2013 Optical Society of America

    Influence of vortex-vortex interaction on critical currents across low-angle grain boundaries in YBa2Cu3O7-delta thin films

    Full text link
    Low-angle grain boundaries with misorientation angles theta < 5 degrees in optimally doped thin films of YBCO are investigated by magnetooptical imaging. By using a numerical inversion scheme of Biot-Savart's law the critical current density across the grain boundary can be determined with a spatial resolution of about 5 micrometers. Detailed investigation of the spatially resolved flux density and current density data shows that the current density across the boundary varies with varying local flux density. Combining the corresponding flux and current pattern it is found that there exists a universal dependency of the grain boundary current on the local flux density. A change in the local flux density means a variation in the flux line-flux line distance. With this knowledge a model is developped that explains the flux-current relation by means of magnetic vortex-vortex interaction.Comment: 7 pages, 14 figure

    A weakly stable algorithm for general Toeplitz systems

    Full text link
    We show that a fast algorithm for the QR factorization of a Toeplitz or Hankel matrix A is weakly stable in the sense that R^T.R is close to A^T.A. Thus, when the algorithm is used to solve the semi-normal equations R^T.Rx = A^Tb, we obtain a weakly stable method for the solution of a nonsingular Toeplitz or Hankel linear system Ax = b. The algorithm also applies to the solution of the full-rank Toeplitz or Hankel least squares problem.Comment: 17 pages. An old Technical Report with postscript added. For further details, see http://wwwmaths.anu.edu.au/~brent/pub/pub143.htm
    corecore