3,138 research outputs found

    Stability and photochemistry of ClO dimers formed at low temperature in the gas phase

    Get PDF
    The recent observations of elevated concentrations of the ClO radical in the austral spring over Antarctica have implicated catalytic destruction by chlorine in the large depletions seen in the total ozone column. One of the chemical theories consistent with an elevated concentration of the ClO is a cycle involving the formation of the ClO dimer through the association reaction: ClO + ClO = Cl2O2 and the photolysis of the dimer to give the active Cl species necessary for O3 depletion. Here, researchers report experimental studies designed to characterize the dimer of ClO formed by the association reaction at low temperatures. ClO was produced by static photolysis of several different precursor systems: Cl sub 2 + O sub 3; Cl sub 2 O sub 2; OClO + Cl sub 2 O spectroscopy in the U.V. region, which allowed the time dependence of Cl sub 2, Cl sub 2 O, ClO, OClO, O sub 3 and other absorbing molecules to be determined

    Constructing Carmichael numbers through improved subset-product algorithms

    Full text link
    We have constructed a Carmichael number with 10,333,229,505 prime factors, and have also constructed Carmichael numbers with k prime factors for every k between 3 and 19,565,220. These computations are the product of implementations of two new algorithms for the subset product problem that exploit the non-uniform distribution of primes p with the property that p-1 divides a highly composite \Lambda.Comment: Table 1 fixed; previously the last 30 digits and number of digits were calculated incorrectl

    On the nature of clear-air turbulence (CAT)

    Get PDF
    CER62ERR11.February 1962.Includes bibliographical references.Scientific interim report.Prepared for Navy Weather Research Facility N189(188)538-28A

    Fever of Unknown Origin: An Unusual Case

    Get PDF
    Recurrent episodic fever of unknown origin (FUO) arising from tumour of the gastrointestinal tract is rare. We report an otherwise healthy 62-year-old man with recurrent circumscribed bouts of fever and raised CRP for 3 years who has remained well and fever-free 2 years after the removal of a well-differentiated adenocarcinoma of the colon. Occult colonic neoplasm should be considered and sought when routine investigations for FUO are negative

    Integration of geometric and contextual inputs to hippocampal place cells.

    Get PDF
    Neurons in the rodent hippocampus fire in highly restricted portions of an environment. These place cells have receptive fields called place fields and are argued to form a representation of space. The work described in this thesis explores the different types of sensory input to these cells, how these inputs are integrated and the implications for our understanding of hippocampal processing. To this end, hippocampal pyramidal neurons were recorded from awake, behaving rats as they foraged for food in a series of different environments. By manipulating the environments to which rats were exposed the nature of the input to place cells was elucidated. The first two experiments explored the influence of geometry on place fields. A novel environment was created that facilitated an examination of how the boundaries that constituted that environment affected place field activity. It was found that the presence of boundaries was important in order to have well-defined and consistent place fields across trials. Furthermore, exposure to one environment affected the place fields recorded in a similar but different environment, suggesting that learning was occurring. The final experiment examined in greater detail the effect of learning on the place cell representation. Place cells were recorded in two neighbouring environments that were the same colour. Initially similar place cell representations were found to diverge over the course of several days and weeks such that the place cell activations in both environments became distinct. Once a distinct pattern of place cell activity was seen, the colour of the environments was changed. The learnt discrimination that was acquired in the initial environments was not transferred to the novel environment. This suggested that the information acquired by place cells was specific to a given environment. These results are incorporated into, and extend, an existing model of place field formation

    Compound-specific isotope analysis of diesel fuels in a forensic investigation

    Get PDF
    Compound-specific isotope analysis (CSIA) offers great potential as a tool to provide chemical evidence in a forensic investigation. Many attempts to trace environmental oil spills were successful where isotopic values were particularly distinct. However, difficulties arise when a large data set is analyzed and the isotopic differences between samples are subtle. In the present study, discrimination of diesel oils involved in a diesel theft case was carried out to infer the relatedness of the samples to potential source samples. This discriminatory analysis used a suite of hydrocarbon diagnostic indices, alkanes, to generate carbon and hydrogen isotopic data of the compositions of the compounds which were then processed using multivariate statistical analyses to infer the relatedness of the data set. The results from this analysis were put into context by comparing the data with the δ13C and δ2H of alkanes in commercial diesel samples obtained from various locations in the South Island of New Zealand. Based on the isotopic character of the alkanes, it is suggested that diesel fuels involved in the diesel theft case were distinguishable. This manuscript shows that CSIA when used in tandem with multivariate statistical analysis provide a defensible means to differentiate and source-apportion qualitatively similar oils at the molecular level. This approach was able to overcome confounding challenges posed by the near single-point source of origin, i.e., the very subtle differences in isotopic values between the samples

    Forensic differentiation of diesel fuels using hydrocarbon isotope fingerprints

    Get PDF
    Abstract Compound-specific isotope analysis (CSIA) is fast becoming an important tool to provide chemical evidence in a forensic investigation. Attempts to trace environmental oil spills were successful where isotopic values were particularly distinct. However, difficulties arise when a large dataset is analyzed and the isotopic differences between samples are subtle. Thus, this study intends to demonstrate any linkages between diesel fuels in a large number of datasets where subtlety in the isotopic values is accentuated by the near single-point source of origin. Diesel fuels were obtained from various locations in the South Island of New Zealand. Aliquots of these samples were diluted with n-pentane and subsequently analyzed with gas chromatography-isotope ratio mass spectrometry (GC-IRMS) for carbon and hydrogen isotope values. The data obtained were subjected to principal component analysis (PCA) and hierarchical clustering. A wide range of δ13C and δ2H values were determined for the ubiquitous alkane compounds (the greatest values being −4.5‰ and −40‰, respectively). Based on the isotopic character of the alkanes it is suggested that diesel fuels from different locations were distinguishable and that the key components in the differentiation are the δ2H values of the shorter chain-length alkanes. However, while the stable isotope measurements may provide information to classify a sample at a broad scale, much more detailed information is required on the temporal and spatial variability of diesel compositions. The subtle differences of the stable isotope values within the alkanes of different diesel fuels highlighted the power of CSIA as a means of differentiating petroleum products of different origins, even more so when two or more stable isotopes data are combined. This paper shows that CSIA when used in tandem with multivariate statistical methods can provide suitable tools for source apportionment of hydrocarbons by demonstrating a straightforward approach, thus eliminating lengthy analytical processes

    Expression and Localization of an Hsp70 Protein in the Microsporidian Encephalitozoon cuniculi

    Get PDF
    Microsporidia spore surface proteins are an important, under investigated aspect of spore/host cell attachment and infection. For comparison analysis of surface proteins, we required an antibody control specific for an intracellular protein. An endoplasmic reticulum-associated heat shock protein 70 family member (Hsp70; ECU02 0100; C1 ) was chosen for further analysis. DNA encoding the C1 hsp70 was amplified, cloned and used to heterologously express the C1 Hsp70 protein, and specific antiserumwas generated. Two-dimensional Western blotting analysis showed that the purified antibodies were monospecific. Immunoelectron microscopy of developing and mature E. cuniculi spores revealed that the protein localized to internal structures and not to the spore surface. In spore adherence inhibition assays, the anti-C1 antibodies did not inhibit spore adherence to host cell surfaces, whereas antibodies to a known surface adhesin (EnP1) did so. In future studies, the antibodies to the \u27C1\u27 Hsp70 will be used to delineate spore surface protein expression
    corecore