908 research outputs found

    The effectiveness of refactoring, based on a compatibility testing taxonomy and a dependency graph

    Get PDF
    In this paper, we describe and then appraise a testing taxonomy proposed by van Deursen and Moonen (VD&M) based on the post-refactoring repeatability of tests. Four categories of refactoring are identified by VD&M ranging from semantic-preserving to incompatible, where, for the former, no new tests are required and for the latter, a completely new test set has to be developed. In our appraisal of the taxonomy, we heavily stress the need for the inter-dependence of the refactoring categories to be considered when making refactoring decisions and we base that need on a refactoring dependency graph developed as part of the research. We demonstrate that while incompatible refactorings may be harmful and time-consuming from a testing perspective, semantic-preserving refactorings can have equally unpleasant hidden ramifications despite their advantages. In fact, refactorings which fall into neither category have the most interesting properties. We support our results with empirical refactoring data drawn from seven Java open-source systems (OSS) and from the same analysis form a tentative categorization of code smells

    The Classical Limit of Quantum Mechanics and the Fejer Sum of the Fourier Series Expansion of a Classical Quantity

    Get PDF
    In quantum mechanics, the expectation value of a quantity on a quantum state, provided that the state itself gives in the classical limit a motion of a particle in a definite path, in classical limit goes over to Fourier series form of the classical quantity. In contrast to this widely accepted point of view, a rigorous calculation shows that the expectation value on such a state in classical limit exactly gives the Fej\'{e}r's arithmetic mean of the partial sums of the Fourier series

    DĂ©veloppement D’un Stock De Semences (Seedstocks) De L’algue Rouge Gelidium Corneum (Gelidiaceae, Rhodophyta)

    Get PDF
    Gelidium corneum is a species of red algae notable for its commercial important as an agarophyte in Morocco. Several regions from the Moroccan Atlantic show that this alga is an endangered species due to the excessive tearing. Hence, the repopulation of these areas is necessary. The in vitro culture of the species was carried out in three media: enriched seawater medium (PES medium (Provasoli Enriched Seawater, Provasoli 1968)), medium with seawater (SW) and medium with artificial seawater, with the addition of polyamines (putrescine (put), spermidine (spd), and spermine (spr)) as a growth regulator in the three media. The results obtained are very significant, especially in PES medium with a growth rate of 95%. Rhizoid formation and attachment of explants have been noted, especially in PES + Put medium

    Degradation of Layered Oxide Cathode in a Sodium Battery: A Detailed Investigation by X-Ray Tomography at the Nanoscale

    Get PDF
    The degradation mechanism in a sodium cell of a layered Na0.48Al0.03Co0.18Ni0.18Mn0.47O2 (NCAM) cathode with P3/P2 structure is investigated by revealing the changes in microstructure and composition upon cycling. The work aims to rationalize the gradual performance decay and the alteration of the electrochemical response in terms of polarization, voltage signature, and capacity loss. Spatial reconstructions of the electrode by X-ray computed tomography at the nanoscale supported by quantitative and qualitative analyses show fractures and deformations in the cycled layered metal-oxide particles, as well as inorganic side compounds deposited on the material. These irreversible morphological modifications reflect structural heterogeneities across the cathode particles due to formation of various domains with different Na+ intercalation degrees. Besides, X-ray photoelectron spectroscopy data suggest that the latter inorganic species in the cycled electrode are mainly composed of NaF, Na2O, and NaCO3 formed by parasitic electrolyte decomposition. The precipitation of these insulating compounds at the electrode/electrolyte interphase and the related structural stresses induced in the material lead to a decrease in cathode particle size and partial loss of electrochemical activity. The retention of the NCAM phase after cycling suggests that electrolyte upgrade may improve the performance of the cathode to achieve practical application for sustainable energy storage

    Making Free Trade Fair

    Get PDF
    Philosophers have done very little work on what makes trade fair. Perhaps the most extensive discussion is Malgorzata Kurjanska and Mathias Risse’s article, “Fairness in Trade II: export subsidies and the fair trade movement.”2 In their article, Kurjanska and Risse consider the case for trade subsidies and the Fair Trade movement. They suggest that it is not permissible for developed countries to give their producers subsidies because doing so does not strike an appropriate balance between meeting the needs of the global poor and protecting domestic workers (Kurjanska and Risse, 2008: 34). Kurjanska and Risse also argue that the case for Fair Trade hinges, primarily, on whether or not it is part of the best development strategy for poor countries. They do not think Fair Trade is part of the best development strategy and, so, they believe purchasing Fair Trade certified goods is only acceptable because doing so does not constitute a large share of the market in traded goods. This chapter argues that the case against subsidies and Fair Trade Kurjanska and Risse present is much weaker than they make out. To the contrary, it argues that giving some subsidies and purchasing some Fair Trade certified goods may even be necessary to make trade fair. Section 11.2 starts by saying a few words about the normative framework Kurjanska and Risse adopt

    New lithium ion batteries exploiting conversion/alloying anode and LiFe₀.₂₅Mn₀.₅Co₀.₂₅PO₄ olivine cathode

    Get PDF
    New Li-ion cells are formed by combining a LiFe₀.₂₅Mn₀.₅Co₀.₂₅PO₄ olivine cathode either with Sn-Fe₂O₃-C composite anodes. These active materials exhibit electrochemical properties very attractive in view of practical use, including the higher working voltage of the LiFe₀.₂₅Mn₀.₅Co₀.₂₅PO₄ cathode with respect to conventional LiFePO₄, as well as the remarkable capacity and rate capability of Sn-Fe₂O₃-C and Sn-C anodes. The stable electrode/electrolyte interfaces, demonstrated by electrochemical impedance spectroscopy, along with proper mass balancing and anode pre-lithiation, allow stable galvanostatic cycling of the full cells. The two batteries, namely Sn-Fe₂O₃-C/LiFe₀.₂₅Mn₀.₅Co₀.₂₅PO₄ and Sn-C/LiFe₀.₂₅Mn₀.₅Co₀.₂₅PO₄, reversibly operate revealing promising electrochemical features in terms of delivered capacity, working voltage and stability, thus suggesting these electrodes combinations as suitable alternatives for an efficient energy storage

    Analysis of Bidirectional Associative Memory using SCSNA and Statistical Neurodynamics

    Full text link
    Bidirectional associative memory (BAM) is a kind of an artificial neural network used to memorize and retrieve heterogeneous pattern pairs. Many efforts have been made to improve BAM from the the viewpoint of computer application, and few theoretical studies have been done. We investigated the theoretical characteristics of BAM using a framework of statistical-mechanical analysis. To investigate the equilibrium state of BAM, we applied self-consistent signal to noise analysis (SCSNA) and obtained a macroscopic parameter equations and relative capacity. Moreover, to investigate not only the equilibrium state but also the retrieval process of reaching the equilibrium state, we applied statistical neurodynamics to the update rule of BAM and obtained evolution equations for the macroscopic parameters. These evolution equations are consistent with the results of SCSNA in the equilibrium state.Comment: 13 pages, 4 figure

    Current status and future perspectives of lithium metal batteries

    Get PDF
    With the lithium-ion technology approaching its intrinsic limit with graphite-based anodes, Li metal is recently receiving renewed interest from the battery community as potential high capacity anode for next-generation rechargeable batteries. In this focus paper, we review the main advances in this field since the first attempts in the mid-1970s. Strategies for enabling reversible cycling and avoiding dendrite growth are thoroughly discussed, including specific applications in all-solid-state (inorganic and polymeric), Lithium–Sulfur (Li–S) and Lithium-O2 (air) batteries. A particular attention is paid to recent developments of these battery technologies and their current state with respect to the 2030 targets of the EU Integrated Strategic Energy Technology Plan (SET-Plan) Action 7

    Climatological variations of total alkalinity and total dissolved inorganic carbon in the Mediterranean Sea surface waters

    Get PDF
    Abstract. A compilation of data from several cruises between 1998 and 2013 was used to derive polynomial fits that estimate total alkalinity (AT) and total dissolved inorganic carbon (CT) from measurements of salinity and temperature in the Mediterranean Sea surface waters. The optimal equations were chosen based on the 10-fold cross-validation results and revealed that second- and third-order polynomials fit the AT and CT data respectively. The AT surface fit yielded a root mean square error (RMSE) of ± 10.6 ÎŒmol kg−1, and salinity and temperature contribute to 96 % of the variability. Furthermore, we present the first annual mean CT parameterization for the Mediterranean Sea surface waters with a RMSE of ± 14.3 ÎŒmol kg−1. Excluding the marginal seas of the Adriatic and the Aegean, these equations can be used to estimate AT and CT in case of the lack of measurements. The identified empirical equations were applied on the 0.25° climatologies of temperature and salinity, available from the World Ocean Atlas 2013. The 7-year averages (2005–2012) showed that AT and CT have similar patterns with an increasing eastward gradient. The variability is influenced by the inflow of cold Atlantic waters through the Strait of Gibraltar and by the oligotrophic and thermohaline gradient that characterize the Mediterranean Sea. The summer–winter seasonality was also mapped and showed different patterns for AT and CT. During the winter, the AT and CT concentrations were higher in the western than in the eastern basin. The opposite was observed in the summer where the eastern basin was marked by higher AT and CT concentrations than in winter. The strong evaporation that takes place in this season along with the ultra-oligotrophy of the eastern basin determines the increase of both AT and CT concentrations
    • 

    corecore