291 research outputs found
In vitro pharmacology of fentanyl analogs at the human mu opioid receptor and their spectroscopic analysis
Opioids are widely misused and account for almost half of overdose deaths in the United States. The cost in terms of lives, health care, and lost productivity is significant and has been declared a national crisis. Fentanyl is a highly potent mu opioid receptor (MOR) agonist and plays a significant role in the current opioid epidemic; fentanyl and its analogs (fentalogs) are increasingly becoming one of the biggest dangers in the opioid crisis. The availability of fentalogs in the illicit market is thought to play a significant role in the recent increase in opioidârelated deaths. Although there is both rodent homolog in vivo and in vitro data for some fentalogs, prior to this publication very little was known about the pharmacology of many of these illicit compounds at the human MOR (hMOR). Using gas chromatographyâmass spectrometry, nuclear magnetic resonance spectroscopy, and in vitro assays, this study describes the spectral and pharmacological properties of 34 fentalogs. The reported spectra and chemical data will allow for easy identification of novel fentalogs in unknown or mixed samples. Taken together these data are useful for law enforcement and clinical workers as they will aid in the identification of fentalogs in unknown samples and can potentially be used to predict physiological effects after exposure.This study reports the basic in vitro pharmacology (affinity, agonist activity, and potencies) of 34 fentanyl analogs at the human mu opioid receptor. In addition, these fentalogs are analyzed spectroscopically using gas chromatographyâmass spectrometry and proton nuclear magnetic resonance spectroscopy, to understand structural commonalities and key differences for identification.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/156439/2/dta2822.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156439/1/dta2822_am.pd
Evaluating social science and humanities knowledge production: An exploratory analysis of dynamics in science systems
Knowledge is gaining increasing importance in modern-day society as a factor of production and, ultimately, growth. This article explores the dynamics in university knowledge production and its effect on the state of university-industry-policy exchange in the Netherlands. Science systems are said to be in transformation. The university has evolved from performing conventional research and educational functions to serving as an innovation-promoting knowledge hub; dynamics that have received mixed reactions. The social sciences and humanities (SSH) take a special position, insofar as their focus seems primarily to be placed on conventional research and educational functions, and not directly on (commercial) valorization. Societal changes are, however, pressing for a reconsideration of the role of SSH. In our article, we distinguish between three important new movements that seem to be affecting SSH. It is believed that these movements, which are already having an impact today, will considerably influence SSH in the future. These developments are further differentiation, synthesis between the various subdisciplines of SSH and the natural sciences, and shifts in paradigms. The aims of this article are twofold: (1) to assess what is believed to be the most likely development of SSH by means of discovering relevant subsets of factors influencing university knowledge production; and (2) to discover whether the knowledge production factors show characteristics of a general development similar to the "Mode 2" concept. A systematic qualitative database was created by means of 22 semi-structured personal interviews with key representatives from business, university and the policy sector. Our explanatory framework employs an artificial intelligence method, i.e. rough set analysis. On the basis of these results, we find that a small minority of the respondents prefers a closer relationship of SSH to society, government and industry, and other institutional centers of authority, whilst interdisciplinarity in particular is regarded as having an overall positive influence on the future of SSH in the Netherlands. Consequently, the idea of a clear distinction between Mode 1 and Mode 2 knowledge production, i.e. traditional knowledge and knowledge carried out in the context of application, is not supported by our data. © 2009 Interdisciplinary Centre for Comparative Research in the Social Sciences and ICCR Foundation
MRI characterization of 124 CT-indeterminate focal hepatic lesions: evaluation of clinical utility
Objective. To evaluate the diagnostic yield of MRI performed for characterization of focal hepatic lesions that are interpreted as indeterminate on CT. Patients and methods. In a retrospective investigation, 124 indeterminate focal hepatic lesions in 96 patients were identified on CT examinations over 5 years from 1997 to 2001. All patients had MRI performed for the liver within 6 weeks of their CT examination. CT and MR images were reviewed independently by two separate groups of two radiologists. The value of MRI in characterizing these lesions was assessed. Diagnoses were confirmed based on histology, characteristic imaging features, and clinical follow-up . Results. MRI definitely characterized 73 lesions (58%) that were indeterminate on CT. MRI was accurate in 72/73 of these lesions. MRI could not definitely characterize 51 lesions (42%). Ten lesions were not visualized on MRI, and follow-up imaging confirmed that no lesion was present in eight of these cases (pseudolesions). Conclusion. MRI is valuable for the characterization of indeterminate focal hepatic lesions detected on CT.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75168/1/13651820701216950.pd
Biotransformation of lanthanum by Aspergillus niger
Lanthanum is an important rare earth element and has many applications in modern electronics and catalyst manufacturing. However, there exist several obstacles in the recovery and cycling of this element due to a low average grade in exploitable deposits and low recovery rates by energy-intensive extraction procedures. In this work, a novel method to transform and recover La has been proposed using the geoactive properties of Aspergillus niger. La-containing crystals were formed and collected after A. niger was grown on Czapek-Dox agar medium amended with LaCl 3. Energy-dispersive X-ray analysis (EDXA) showed the crystals contained C, O, and La; scanning electron microscopy revealed that the crystals were of a tabular structure with terraced surfaces. X-ray diffraction identified the mineral phase of the sample as La 2(C 2O 4) 3·10H 2O. Thermogravimetric analysis transformed the oxalate crystals into La 2O 3 with the kinetics of thermal decomposition corresponding well with theoretical calculations. Geochemical modelling further confirmed that the crystals were lanthanum decahydrate and identified optimal conditions for their precipitation. To quantify crystal production, biomass-free fungal culture supernatants were used to precipitate La. The results showed that the precipitated lanthanum decahydrate achieved optimal yields when the concentration of La was above 15 mM and that 100% La was removed from the system at 5 mM La. Our findings provide a new aspect in the biotransformation and biorecovery of rare earth elements from solution using biomass-free fungal culture systems. </p
- âŠ