560 research outputs found
Can real-time visual feedback during gait retraining reduce metabolic demand for individuals with transtibial amputation?
The metabolic demand of walking generally increases following lower extremity amputation. This study used real-time visual feedback to modify biomechanical factors linked to an elevated metabolic demand of walking in individuals with transtibial amputation. Eight persons with unilateral, traumatic transtibial amputation and 8 uninjured controls participated. Two separate bouts of real-time visual feedback were provided during a single session of gait retraining to reduce 1) center of mass sway and 2) thigh muscle activation magnitudes and duration. Baseline and post-intervention data were collected. Metabolic rate, heart rate, frontal plane center of mass sway, quadriceps and hamstrings muscle activity, and co-contraction indices were evaluated during steady state walking at a standardized speed. Visual feedback successfully decreased center of mass sway 12% (p = 0.006) and quadriceps activity 12% (p = 0.041); however, thigh muscle co-contraction indices were unchanged. Neither condition significantly affected metabolic rate during walking and heart rate increased with center-of-mass feedback. Metabolic rate, center of mass sway, and integrated quadriceps muscle activity were all not significantly different from controls. Attempts to modify gait to decrease metabolic demand may actually adversely increase the physiological effort of walking in individuals with lower extremity amputation who are young, active and approximate metabolic rates of able-bodied adults
Recommended from our members
Comprehensive Simultaneous Shipboard and Airborne Characterization of Exhaust from a Modern Container Ship at Sea
We report the first joint shipboard and airborne study focused on the chemical composition and water-uptake behavior of particulate ship emissions. The study focuses on emissions from the main propulsion engine of a Post-Panamax class container ship cruising off the central coast of California and burning heavy fuel oil. Shipboard sampling included micro-orifice uniform deposit impactors (MOUDI) with subsequent off-line analysis, whereas airborne measurements involved a number of real-time analyzers to characterize the plume aerosol, aged from a few seconds to over an hour. The mass ratio of particulate organic carbon to sulfate at the base of the ship stack was 0.23 ± 0.03, and increased to 0.30 ± 0.01 in the airborne exhaust plume, with the additional organic mass in the airborne plume being concentrated largely in particles below 100 nm in diameter. The organic to sulfate mass ratio in the exhaust aerosol remained constant during the first hour of plume dilution into the marine boundary layer. The mass spectrum of the organic fraction of the exhaust aerosol strongly resembles that of emissions from other diesel sources and appears to be predominantly hydrocarbon-like organic (HOA) material. Background aerosol which, based on air mass back trajectories, probably consisted of aged ship emissions and marine aerosol, contained a lower organic mass fraction than the fresh plume and had a much more oxidized organic component. A volume-weighted mixing rule is able to accurately predict hygroscopic growth factors in the background aerosol but measured and calculated growth factors do not agree for aerosols in the ship exhaust plume. Calculated CCN concentrations, at supersaturations ranging from 0.1 to 0.33%, agree well with measurements in the ship-exhaust plume. Using size-resolved chemical composition instead of bulk submicrometer composition has little effect on the predicted CCN concentrations because the cutoff diameter for CCN activation is larger than the diameter where the mass fraction of organic aerosol begins to increase significantly. The particle number emission factor estimated from this study is 1.3 × 10^(16) (kg fuel)^(−1), with less than 1/10 of the particles having diameters above 100 nm; 24% of particles (>10 nm in diameter) activate into cloud droplets at 0.3% supersaturation
On the Singular Pebbling Number of a Graph
In this paper, we define a new parameter of a connected graph as a spin-off of the pebbling number (which is the smallest t such that every supply of t pebbles can satisfy every demand of one pebble). This new parameter is the singular pebbling number, the smallest t such that a player can be given any configuration of at least t pebbles and any target vertex and can successfully move pebbles so that exactly one pebble ends on the target vertex. We also prove that the singular pebbling number of any graph on 3 or more vertices is equal to its pebbling number, that the singular pebbling number of the disconnected graph on two vertices is equal to its pebbling number, and we find the singular pebbling numbers of the two remaining graphs, K1 and K2, which are not equal to their pebbling numbers
Recommended from our members
Effects of Chronic Fluoxetine and Paroxetine Treatment on Affective Behavior of Male and Female Adolescent Rats
Molecular structures of gas‐phase polyatomic molecules determined by spectroscopic methods
Spectroscopic data related to the structures of polyatomic molecules in the gas phase have been reviewed, critically evaluated, and compiled. All reported bond distances and angles have been classified as equilibrium (re), average (rz), substitution (rs), or effective (ro) parameters, and have been given a quality rating which is a measure of the parameter uncertainty. The surveyed literature includes work from all of the areas of gas‐phase spectroscopy from which precise quantitative structural information can be derived. Introductory material includes definitions of the various types of parameters and a description of the evaluation procedure.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87746/2/619_1.pd
Relativistic separable dual-space Gaussian Pseudopotentials from H to Rn
We generalize the concept of separable dual-space Gaussian pseudopotentials
to the relativistic case. This allows us to construct this type of
pseudopotential for the whole periodic table and we present a complete table of
pseudopotential parameters for all the elements from H to Rn. The relativistic
version of this pseudopotential retains all the advantages of its
nonrelativistic version. It is separable by construction, it is optimal for
integration on a real space grid, it is highly accurate and due to its analytic
form it can be specified by a very small number of parameters. The accuracy of
the pseudopotential is illustrated by an extensive series of molecular
calculations
Ambient particulate matter air pollution exposure and mortality in the NIH-AARP diet and health cohort
BACKGROUND: Outdoor fine particulate matter (≤ 2.5 μm; PM2.5) has been identified as a global health threat, but the number of large U.S. prospective cohort studies with individual participant data remains limited, especially at lower recent exposures. OBJECTIVES: We aimed to test the relationship between long-term exposure PM2.5 and death risk from all nonaccidental causes, cardiovascular (CVD), and respiratory diseases in 517,041 men and women enrolled in the National Institutes of Health-AARP cohort. METHODS: Individual participant data were linked with residence PM2.5 exposure estimates across the continental United States for a 2000–2009 follow-up period when matching census tract–level PM2.5 exposure data were available. Participants enrolled ranged from 50 to 71 years of age, residing in six U.S. states and two cities. Cox proportional hazard models yielded hazard ratio (HR) estimates per 10 μg/m3 of PM2.5 exposure. RESULTS: PM2.5 exposure was significantly associated with total mortality (HR = 1.03; 95% CI: 1.00, 1.05) and CVD mortality (HR = 1.10; 95% CI: 1.05, 1.15), but the association with respiratory mortality was not statistically significant (HR = 1.05; 95% CI: 0.98, 1.13). A significant association was found with respiratory mortality only among never smokers (HR = 1.27; 95% CI: 1.03, 1.56). Associations with 10-μg/m3 PM2.5 exposures in yearly participant residential annual mean, or in metropolitan area-wide mean, were consistent with baseline exposure model results. Associations with PM2.5 were similar when adjusted for ozone exposures. Analyses of California residents alone also yielded statistically significant PM2.5 mortality HRs for total and CVD mortality. CONCLUSIONS: Long-term exposure to PM2.5 air pollution was associated with an increased risk of total and CVD mortality, providing an independent test of the PM2.5–mortality relationship in a new large U.S. prospective cohort experiencing lower post-2000 PM2.5 exposure levels. CITATION: Thurston GD, Ahn J, Cromar KR, Shao Y, Reynolds HR, Jerrett M, Lim CC, Shanley R, Park Y, Hayes RB. 2016. Ambient particulate matter air pollution exposure and mortality in the NIH-AARP Diet and Health cohort. Environ Health Perspect 124:484–490; http://dx.doi.org/10.1289/ehp.150967
Understanding the Experiences of Nurses Providing HIV Care in Rural Uganda
The era of HIV in Uganda has impacted every sector of society, especially the health system. Nurses are commonly the only health professionals available at rural health facilities, working with heavy workloads in difficult circumstances. This study examined how rural nurses cared for people living with HIV and AIDS, explored challenges to care, experiences of stress and coping strategies. Using a focused ethnography, the study took place from September 2010 to February 2011 and included 5 focus groups and 14 interviews with nurses in Kabarole District, Uganda. Structural challenges included staffing and drug shortages and social challenges included stigma, poverty and gender inequality, which prevented nursing care for patients with HIV and AIDS. Nurses felt demoralized and helpless, and relied on teamwork and faith to cope with their workload. Suggestions for policy interventions include improved staffing, using a mix of incentives and increased policy involvement to improve the nursing situation
Loss of the Histone Pre-mRNA Processing Factor Stem-Loop Binding Protein in Drosophila Causes Genomic Instability and Impaired Cellular Proliferation
BACKGROUND:Metazoan replication-dependent histone mRNAs terminate in a conserved stem-loop structure rather than a polyA tail. Formation of this unique mRNA 3' end requires Stem-loop Binding Protein (SLBP), which directly binds histone pre-mRNA and stimulates 3' end processing. The 3' end stem-loop is necessary for all aspects of histone mRNA metabolism, including replication coupling, but its importance to organism fitness and genome maintenance in vivo have not been characterized. METHODOLOGY/PRINCIPAL FINDINGS:In Drosophila, disruption of the Slbp gene prevents normal histone pre-mRNA processing and causes histone pre-mRNAs to utilize the canonical 3' end processing pathway, resulting in polyadenylated histone mRNAs that are no longer properly regulated. Here we show that Slbp mutants display genomic instability, including loss of heterozygosity (LOH), increased presence of chromosome breaks, tetraploidy, and changes in position effect variegation (PEV). During imaginal disc growth, Slbp mutant cells show defects in S phase and proliferate more slowly than control cells. CONCLUSIONS/SIGNIFICANCE:These data are consistent with a model in which changing the 3' end of histone mRNA disrupts normal replication-coupled histone mRNA biosynthesis and alters chromatin assembly, resulting in genomic instability, inhibition of cell proliferation, and impaired development
Lysine-36 of Drosophila histone H3.3 supports adult longevity
Aging is a multifactorial process that disturbs homeostasis, increases disease susceptibility, and ultimately results in death. Although the definitive set of molecular mechanisms responsible for aging remain to be discovered, epigenetic change over time is proving to be a promising piece of the puzzle. Several post-translational histone modifications have been linked to the maintenance of longevity. Here, we focus on lysine-36 of the replication-independent histone protein, H3.3 (H3.3K36). To interrogate the role of this residue in Drosophila developmental gene regulation, we generated a lysine-to-arginine mutant that blocks the activity of its cognate-modifying enzymes. We found that an H3.3BK36R mutation causes a significant reduction in adult lifespan, accompanied by dysregulation of the genomic and transcriptomic architecture. Transgenic co-expression of wild-type H3.3B completely rescues the longevity defect. Because H3.3 is known to accumulate in nondividing tissues, we carried out transcriptome profiling of young vs aged adult fly heads. The data show that loss of H3.3K36 results in age-dependent misexpression of NF-κB and other innate immune target genes, as well as defects in silencing of heterochromatin. We propose H3.3K36 maintains the postmitotic epigenomic landscape, supporting longevity by regulating both pericentric and telomeric retrotransposons and by suppressing aberrant immune signaling
- …
