898 research outputs found

    KN and KbarN Elastic Scattering in the Quark Potential Model

    Full text link
    The KN and KbarN low-energy elastic scattering is consistently studied in the framework of the QCD-inspired quark potential model. The model is composed of the t-channel one-gluon exchange potential, the s-channel one-gluon exchange potential and the harmonic oscillator confinement potential. By means of the resonating group method, nonlocal effective interaction potentials for the KN and KbarN systems are derived and used to calculate the KN and KbarN elastic scattering phase shifts. By considering the effect of QCD renormalization, the contribution of the color octet of the clusters (qqbar) and (qqq) and the suppression of the spin-orbital coupling, the numerical results are in fairly good agreement with the experimental data.Comment: 20 pages, 8 figure

    Superconductivity induced by doping Platinum in BaFe2As2

    Full text link
    By substituting Fe with the 5d-transition metal Pt in BaFe2As2, we have successfully synthesized the superconductors BaFe2-xPtxAs2. The systematic evolution of the lattice constants indicates that the Fe ions were successfully replaced by Pt ions. By increasing the doping content of Pt, the antiferromagnetic order and structural transition of the parent phase is suppressed and superconductivity emerges at a doping level of about x = 0.02. At a doping level of x = 0.1, we get a maximum transition temperature Tc of about 25 K. The synchrotron powder x-ray diffraction shows that the resistivity anomaly is in good agreement with the structural transition. The superconducting transitions at different magnetic fields were also measured at the doping level of about x = 0.1, yielding a slope of -dHc2/dT = 5.4 T/K near Tc. A phase diagram was established for the Pt doped 122 system. Our results suggest that superconductivity can also be easily induced in the FeAs family by substituting the Fe with Pt, with almost the similar maximum transition temperatures as doping Ni, Co, Rh and Ir.Comment: 6 pages, 5 figure

    Congestion behavior and tolls in a bottleneck model with stochastic capacity

    Get PDF
    In this paper we investigate a bottleneck model in which the capacity of the bottleneck is assumed stochastic and follows a uniform distribution. The commuters’ departure time choice is assumed to follow the user equilibrium principle according to mean trip cost. The analytical solution of the proposed model is derived. Both the analytical and numerical results show that the capacity variability would indeed change the commuters’ travel behavior by increasing the mean trip cost and lengthening the peak period. We then design congestion pricing schemes within the framework of the new stochastic bottleneck model, for both a time-varying toll and a single-step coarse toll, and prove that the proposed piecewise time-varying toll can effectively cut down, and even eliminate, the queues behind the bottleneck. We also find that the single-step coarse toll could either advance or postpone the earliest departure time. Furthermore, the numerical results show that the proposed pricing schemes can indeed improve the efficiency of the stochastic bottleneck through decreasing the system’s total travel cost

    Evolutionary prisoner's dilemma game with dynamic preferential selection

    Full text link
    We study a modified prisoner's dilemma game taking place on two-dimensional disordered square lattices. The players are pure strategists and can either cooperate or defect with their immediate neighbors. In the generations each player update its strategy by following one of the neighboring strategies with a probability dependent on the payoff difference. The neighbor selection obeys a dynamic preferential rule, i.e., the more frequently a neighbor's strategy was adopted by the focal player in the previous rounds, the larger probability it will be chosen to refer to in the subsequent rounds. It is found that cooperation is substantially promoted due to this simple selection mechanism. Corresponding analysis is provided by the investigations of the distribution of players' impact weights, persistence, and as well as correlation function.Comment: 7 pages, 5 figure

    First Principles Studies on 3-Dimentional Strong Topological Insulators: Bi2Te3, Bi2Se3 and Sb2Te3

    Full text link
    Bi2Se3, Bi2Te3 and Sb2Te3 compounds are recently predicted to be 3-dimentional (3D) strong topological insulators. In this paper, based on ab-initio calculations, we study in detail the topological nature and the surface states of this family compounds. The penetration depth and the spin-resolved Fermi surfaces of the surface states will be analyzed. We will also present an procedure, from which highly accurate effective Hamiltonian can be constructed, based on projected atomic Wannier functions (which keep the symmetries of the systems). Such Hamiltonian can be used to study the semi-infinite systems or slab type supercells efficiently. Finally, we discuss the 3D topological phase transition in Sb2(Te1-xSex)3 alloy system.Comment: 8 pages,17 figure

    Microstructure and mechanical properties of large-volume gradient-structure aluminium sheets fabricated by cyclic skin-pass rolling

    Get PDF
    Materials of a gradient structure have been shown to possess both high strength and high ductility. To date, materials of a gradient structure can only be produced in small quantities. In this paper, we report a novel \u27cyclic skin-pass rolling\u27 (CSPR) technique capable of producing sheets of gradient structure in large quantities. Both experimental and analytical/numerical investigations are reported. In the experiments on aluminium sheets, the outer layer was subjected to 40 passes of CSPR with a reduction ratio of 1% per pass. After CSPR, the sample surface shows an ultrafine-grained microstructure with a mean grain size of 206 nm, while the annealed microstructure is retained in the core of the sample. Compared with cold-rolled aluminium sheets fabricated with the same total reduction ratio, CSPR-processed aluminium sheets have the same yield stress but improved uniform elongation (2.4 times). The scanning electron microscopy was used to study the fracture surface, and The transmission electron microscopy to examine the microstructure near the fracture end, in order to analyse the improvement in ductility. In addition, the finite element method was used to simulate the roll-sample contact pressure and strain distribution as well as residual stress on the sheet surface during CSPR, and to better understand the mechanism leading to improvement of ductility of the sheets by the CSPR technique

    Quark Confinement and the Fractional Quantum Hall Effect

    Full text link
    Working in the physics of Wilson factor and Aharonov-Bohm effect, we find in the fluxtube-quark system the topology of a baryon consisting three heavy flavor quarks resembles that of the fractional quantum Hall effect (FQHE) in condensed matter. This similarity yields the result that the constituent quarks of baryon have the "filling factor" 1/3, thus the previous conjecture that quark confinement is a correlation effect was confirmed. Moreover, by deriving a Hamiltonian of the system analogous to that of FQHE, we predict an energy gap for the ground state of a heavy three-quark system.Comment: 15 pages, 2 figures, graphs regulate

    Renormalization of the Sigma-Omega model within the framework of U(1) gauge symmetry

    Full text link
    It is shown that the Sigma-Omega model which is widely used in the study of nuclear relativistic many-body problem can exactly be treated as an Abelian massive gauge field theory. The quantization of this theory can perfectly be performed by means of the general methods described in the quantum gauge field theory. Especially, the local U(1) gauge symmetry of the theory leads to a series of Ward-Takahashi identities satisfied by Green's functions and proper vertices. These identities form an uniquely correct basis for the renormalization of the theory. The renormalization is carried out in the mass-dependent momentum space subtraction scheme and by the renormalization group approach. With the aid of the renormalization boundary conditions, the solutions to the renormalization group equations are given in definite expressions without any ambiguity and renormalized S-matrix elememts are exactly formulated in forms as given in a series of tree diagrams provided that the physical parameters are replaced by the running ones. As an illustration of the renormalization procedure, the one-loop renormalization is concretely carried out and the results are given in rigorous forms which are suitable in the whole energy region. The effect of the one-loop renormalization is examined by the two-nucleon elastic scattering.Comment: 32 pages, 17 figure

    Spin-dependent thermoelectric transport through double quantum dots

    Full text link
    We study thermoelectric transport through double quantum dots system with spin-dependent interdot coupling and ferromagnetic electrodes by means of the non-equilibrium Green function in the linear response regime. It is found that the thermoelectric coefficients are strongly dependent on the splitting of interdot coupling, the relative magnetic configurations and the spin polarization of leads. In particular, the thermoelectric efficiency can achieve considerable value in parallel configuration when the effective interdot coupling and tunnel coupling between QDs and the leads for spin-down electrons are small. Moreover, the thermoelectric efficiency increases with the intradot Coulomb interactions increasing and can reach very high value at an appropriate temperature. In the presence of the magnetic field, the spin accumulation in leads strongly suppresses the thermoelectric efficiency and a pure spin thermopower can be obtained.Comment: 5 figure

    Effects of dimers on cooperation in the spatial prisoner's dilemma game

    Full text link
    We investigate the evolutionary prisoner's dilemma game in structured populations by introducing dimers, which are defined as that two players in each dimer always hold a same strategy. We find that influences of dimers on cooperation depend on the type of dimers and the population structure. For those dimers in which players interact with each other, the cooperation level increases with the number of dimers though the cooperation improvement level depends on the type of network structures. On the other hand, the dimers, in which there are not mutual interactions, will not do any good to the cooperation level in a single community, but interestingly, will improve the cooperation level in a population with two communities. We explore the relationship between dimers and self-interactions and find that the effects of dimers are similar to that of self-interactions. Also, we find that the dimers, which are established over two communities in a multi-community network, act as one type of interaction through which information between communities is communicated by the requirement that two players in a dimer hold a same strategy.Comment: 12 pages and 3 figure
    • …
    corecore