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Abstract 
In this paper we investigate a bottleneck model in which the capacity of the bottleneck is 
assumed stochastic and follows a uniform distribution. The commuters’ departure time choice 
is assumed to follow the user equilibrium principle according to mean trip cost. The analytical 
solution of the proposed model is derived. Both the analytical and numerical results show that 
the capacity variability would indeed change the commuters’ travel behavior by increasing the 
mean trip cost and lengthening the peak period. We then design congestion pricing schemes 
within the framework of the new stochastic bottleneck model, for both a time-varying toll and 
a single-step coarse toll, and prove that the proposed piecewise time-varying toll can 
effectively cut down, and even eliminate, the queues behind the bottleneck. We also find that 
the single-step coarse toll could either advance or postpone the earliest departure time. 
Furthermore, the numerical results show that the proposed pricing schemes can indeed 
improve the efficiency of the stochastic bottleneck through decreasing the system’s total 
travel cost. 
 
Key words: bottleneck model; stochastic capacity; departure time choice; congestion pricing 

 

1. Introduction 

The well known bottleneck model was originally developed by Vickrey (1969). This model 

formulates the commuters’ trip schedule during a morning rush hour. In the model, it is 

assumed that the commuters’ travel cost consists of two components: the cost of travel time 

(including free flow travel time and queuing time) and the cost of schedule delay from early 

or late arrival at the workplace. The departure time choice follows the user equilibrium (UE) 

principle, i.e., all commuters experience the same travel cost no matter when they leave home. 

http://dx.doi.org/10.1287/trsc.2013.0483
mailto:lingsayok@163.com
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The simplicity of this single bottleneck model provides a theoretical base to gain qualitative 

insights into alternative policy measures such as congestion pricing and metering, and several 

studies have since extended the basic single bottleneck model (see comprehensive reviews in 

Arnott et al. 1990a, 1998; de Palma et al. 2011). Smith (1984) and Daganzo (1985) proved the 

existence and uniqueness of the bottleneck equilibrium. Arnott et al. (1993) and Braid (1989) 

extended the basic bottleneck model to consider elastic demand, whilst Lindsey (2004) and 

Ramadurai et al (2010) developed a single bottleneck model with heterogeneous commuters. 

Most of the existing literature, however, is based on deterministic settings, with either a 

fixed capacity and demand (Vickrey 1969; Arnott et al. 1990b; Lindsey 2004; Huang and 

Lam 2002), or a pre-defined elastic demand function (Arnott et al. 1993; Yang and Huang 

1997). In reality, not only does travel time increase with traffic volume, but there is also a 

wide range of randomness in the micro behavior of traffic and traffic conditions. Variations in 

the behavior of individual drivers, in the performance of vehicles, in weather and lighting on 

driving conditions, etc, all contribute to the unpredictability or the unreliability of travel time. 

Variation in road capacity may also occur for physical and operational reasons, such as road 

works, accidents, vehicle breakdown.. It is intuitive to represent the above-mentioned 

variations and their impacts on network performance using probability distributions (Chen et 

al. 2002). Arnott et al. (1999) considered the case where the ratio of demand to capacity is 

stochastic and examined the effect of information on total social cost. Fosgerau (2008) 

derived a closed form expression for the expected cost in a bottleneck model with stochastic 

capacity and demand, assuming linear scheduling costs. Siu and Lo (2009) investigated the 

random travel delay in a single bottleneck with a heterogeneous population and arrival 

probability constraint. Li et al. (2008) developed numerical methods to solve a bottleneck 

where daily capacity is distributed uniformly between an upper and a lower bound. Arnott et 

al (1999) proved the existence of equilibrium for a general distribution of capacity. However 

Fosgerau and Jensen (2008) subsequently proved that, in a bottleneck with stochastic demand 

and supply and assuming the last user always departs after the preferred time, the equilibrium 

condition may not exist. Lindsey (2009) studied the cost recovery problem from congestion 

tolls when the bottleneck capacity is random. Fosgerau (2010) investigated the distribution of 

http://ideas.repec.org/a/eee/juecon/v66y2009i1p16-24.html
http://ideas.repec.org/a/eee/juecon/v66y2009i1p16-24.html
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delays in a congested facility with random capacity and demand. Lindsey (1994, 1999) 

examined the properties of no-toll equilibrium and system optimum in a bottleneck model 

with a given joint probability distribution of capacity and demand. Lindsey’s analysis focused 

on a general distribution of road capacity. In contrast, Peer et al. (2010) investigated the 

capacity changes within peak periods using the bottleneck model.  

It is widely recognized that congestion pricing is an effective method to reduce traffic 

congestion. Vickrey (1969) proposed an optimal, continuous time-varying toll scheme which 

was shown to have eliminated the queuing delay at the bottleneck. Arnott et al. (1990b) 

developed an optimal time-varying toll and a one-step coarse toll for a deterministic 

bottleneck such that the average cost excluding the toll is minimal under time-variable toll. . 

Laih (1994, 2004) developed a multi-step toll scheme for a single bottleneck, and analyzed 

the amount of queue reduction and the effects of the toll scheme on equilibrium commuting 

behavior. Knockaert et al. (2010) studied a single-step coarse toll with inelastic demand. 

Recently, Lindsey et al. (2012) proposed a braking model in which drivers approaching a 

tolling point wait until a toll is lowered from one time-step to another. They showed that such 

braking model would lengthen the peak period with earlier departure and later arrival. 

Comparatively, congestion pricing under uncertainty has received relatively little attention.  

Lindsey (1994, 1999) investigated optimal pricing and information provision under stochastic 

bottleneck capacity conditions. He found that, if a time-varying toll is implemented, the 

optimal departure is a non-decreasing function with time over the peak period and the toll 

charged is a concave function with time. Under the assumption of a two-point distribution of 

capacity, the peak starts earlier. Daniel (1995) used a discrete Markov Chain to model the 

expected optimal congestion toll with arrival time uncertainty. Following the perspective of 

Henderson (1974) to efficiently manage urban traffic congestion through pricing, Lam (2000) 

developed a model with congestion uncertainty in a network with parallel bottlenecks. Yao et 

al. (2010) considered travel cost uncertainty and stochastic tolling as a foundation for 

introducing congestion derivatives. 

In this paper, we focus on the morning commuting problem along a single highway with 

stochastic capacity. We limit our analysis to day-to-day fluctuations in capacity, and assume 
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that the capacity within the day is constant and that the bottleneck is severely congested over 

the peak period. The capacity fluctuation leads to variability in queue length behind the 

bottleneck and to variability of travel time and trip cost, which in turn directly influences the 

commuters’ departure time choice behavior. This problem is formulated as a bottleneck 

model with stochastic capacity. We derive the model’s analytical solution and investigate the 

properties of the model. More specifically, we conduct detailed analysis of the equilibrium 

cost patterns. A similar stochastic bottleneck model has been developed by Li et al (2008), 

who analyzed two equilibrium cost patterns for expected early arrivals and expected late 

arrivals. In this paper, we consider four possible departure-time intervals in a very congested 

bottleneck when users always arrive early, can arrive early or late, always arrive late and incur 

a queuing delay, or always arrive late and may not incur a queuing delay.  

The solution of the proposed model shows that the capacity variability of the bottleneck 

leads to significant changes in departure time patterns, which are different to those derived 

under deterministic conditions. In a deterministic bottleneck model, an individual can choose 

either to depart in the tails of the rush hour when travel time is low and pay the penalty of 

arriving at work early or late, or  to depart during the peak when travel time is high but 

schedule delay cost are low. In other words, under the deterministic equilibrium, schedule 

delay early and schedule delay late cannot occur simultaneously for a given departure time 

(Arnott et al. 1990b). We demonstrate that with stochastic capacity, commuters departing at 

the same time during the peak can experience early or late arrival depending on the capacity 

on the day. 

Furthermore, we investigate a time-varying toll and a single-step coarse toll within the 

framework of this stochastic bottleneck model. The time-varying toll is shown to effectively 

reduce, and in certain conditions even eliminate, the queues behind the bottleneck without 

changing the commuters’ mean trip cost. However, time-varying pricing scheme is perceived 

as unpredictable by the general public and has practical difficulties to implement as it requires 

continuously changeable charges. A main contribution of this paper is the development of a 

single-step coarse toll which levies a positive, constant charge during a pre-determined time 

period, and we analyze its impact on the commuters’ departure-time choice. The results 
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suggest that the single-step coarse toll may either advance or postpone the earliest departure 

time. Both pricing schemes are shown to improve the efficiency of the stochastic bottleneck 

through decreasing the system’s total travel cost. 

The rest of this paper is organized as follows. In the next section, we provide an overview 

of the deterministic bottleneck model. The commuters’ travel costs and departure time choice 

in a single bottleneck with stochastic capacity are formulated in Section 3. We also examine 

the model’s properties in this section. In Sections 4 and 5, we develop a time-varying toll and 

a single-step coarse toll. Numerical examples are presented in Section 6 to illustrate the 

properties of the proposed model. Finally, section 7 concludes the paper. 

 

2. Overview of the Bottleneck Model with Deterministic Capacity  

Let us take a highway with a single bottleneck connecting a residential district with a central 

business district (CBD). Let s  be the capacity of the bottleneck, 
freet  the free flow travel time 

of the highway, and N  the travel demand from the residential district to the CBD. 

Throughout this paper, we set 
free 0t   for simplicity andthis will not change any properties of 

the bottleneck model. 

By definition, the cumulative departures ( )R t  can be formulated as follows:  

0

( ) ( )d
t

t
R t r x x  , (1) 

where ( )r x  is the departure rate at time instant x , and 0t  the earliest time with positive 

departure rate. 

We consider that the highway is congested during the rush hour and that the capacity of 

the bottleneck will have been fully utilized from time 0t . The length of the queue behind the 

bottleneck is therefore: 

  0( ) max ( ) ,0Q t R t s t t   . (2) 

The travel time for travelers departing at time t  equals the queuing time and can be 

formulated as follows: 
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( )
( )

Q t
T t

s
 . (3) 

The cost for commuters traveling from home to the CBD consists of two components: the 

cost of travel time and the cost of schedule delay early or late. The total cost can be 

formulated as follows: 

 
 

* *

* *

( ) ,   if  ( )
( ) ( )

( ) ,   if  ( )

t t T t t t T t
C t T t

t T t t t t T t






      
   

 (4) 

where *t is the preferred arrival time (i.e. the official work start time),  ,  and   denote the 

values of travel time, schedule delay early (SDE) and schedule delay late (SDL) respectively. 

In accordance with the empirical findings in Small (1982), the following relationship holds: 

0     . (5) 

To ensure the existence of a deterministic equilibrium, it is necessary to assume   ; the 

opposite case of    is discussed in Appendix 1 of Arnott et al. (1985). 

The equilibrium condition for commuters’ departure time choice in a single bottleneck is 

defined as: no commuter can reduce his/her travel cost by unilaterally altering his/her 

departure time. This condition implies that all commuters incur the same cost, and therefore 

travel cost is constant at all times while commuters are departing, i.e., d ( ) d 0C t t   if  

( ) 0r t  . Using this condition, we can obtain the commuters’ departure rate during the rush 

hour as follows (see Arnott et al. 1990b for further details): 

 
 

0, if 
( )

, if 

t

t e

s t t t
r t

s t t t

  

  

   
  

 (6) 

where 0t  and et  are, respectively, the earliest and the latest times with positive departure rate, 

and tt  is the watershed time for departure rate changing (i.e. the departure time at which an 

individual arrives at the CBD on time *t ). The reasoning underlying this result is that the 

departure rate function must be such that the marginal benefit from postponing the departure 

by a unit of time equals the marginal cost. In the case of departure prior to tt , the marginal 
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benefit from postponing the departure is the reduction in early arrival cost  1 ( )T t  and 

the marginal cost is the increased travel time cost ( )T t , where ( )T t  denotes a time 

derivative. Application of (3) then gives  r t  for  0, tt t t . The reasoning for departing after 

tt  is analogous. The arrival rate at work, meanwhile, is constant at s  over the rush hour. Thus, 

a queue builds up linearly from 0t  to tt  and then dissipates linearly until it disappears at et . As 

derived in Arnott et al. (1990b), we have   *
0   t t N s   ,   *  et t N s    

and   *  tt t N s    . 

 

3. Bottleneck Model with Stochastic Capacity 

3.1. Assumptions 

Throughout this paper, the following four assumptions are used:  

(A1) Commuters are homogeneous with the same value of time and the same values of 

schedule delays. 

(A2) The capacity of the bottleneck is constant within a day but fluctuates from day to day. 

The variability of capacity is exogenous and independent of departures.  

(A3) The capacity is a non-negative stochastic variable changing around a certain mean 

capacity. Following Kuang et al. (2007) and Li et al. (2008), we assume that stochastic 

capacity follows a uniform distribution within interval [ , ]s s , where s  is the design capacity 

and ( 1)   is a positive variable which denotes the lowest rate of available capacity. 

(A4) Commuters are aware of the capacity degeneration probability and their departure 

time choice follows the UE principle in terms of mean trip cost. 

Unlike the Vickrey (1969) model, we assume the capacity of the single bottleneck is 

stochastic, although the commuters’ departure time choice is made deterministically based on 

mean trip cost. The constant within-day capacity assumption (A2) implies that the current 

model accounts for incidents happened before the peak started (when the first of the N  

commuters departed), but not for incidents occurring during the peak period. The later was 
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investigated by Fosgerau (2010) and Peer et al. (2010). We consider that the commuters’ 

travel time and their schedule delays are both stochastic due to capacity fluctuations. We 

assume further that the commuters learn the incident probability from their day-to-day travel 

(A4), and adjust their departure time in order to minimize their expected travel costs. 

3.2. Stochastic Trip Cost Formulation 

Under the stochastic condition, definitions in (1)-(3) are still valid, and (4) can still be used to 

calculate the trip cost of commuters departing at time instant t . However, the trip cost is now 

not deterministic but stochastic. For simplicity, we set the preferred arrival time as zero, i.e., 

* 0t  . The mean trip cost with respect to departure time t under stochastic condition can be 

formulated as follows:  

 ( ) ( ) ( ) ( )    E C t E T t SDE t SDL t    

 ( ) ( ) ( )        E T t E SDE t E SDL t   , (7) 

where ( )SDE t  and ( )SDL t  are the schedule delay early and late for commuters departing at 

time t, respectively, and can be expressed as follows: 

 ( ) max 0, ( )SDE t T t t    and  ( ) max 0, ( )SDL t T t t  . (8) 

3.3. Stochastic Bottleneck Model 

The equilibrium condition for commuters’ departure time choice in a single bottleneck with 

stochastic capacity is as follows: no commuter can reduce his/her mean trip cost by 

unilaterally altering his/her departure time. This condition implies that the commuters’ mean 

trip cost is constant with respect to time instant if the departure rate is positive, i.e., 

d [ ( )] d 0E C t t , if  ( ) 0r t  . (9) 

The calculation of the mean trip cost relies on the calculations of the mean travel time, the 

mean schedule delay early and late. Because of the day-to-day stochastic capacity of the 

bottleneck, commuters departing at the same time may endure schedule delay early or late in 

different days, and may or may not encounter queuing delays. In this paper, we study a very 

congested bottleneck, and there are in total four situations to be considered, each 

corresponding to a time interval within which (I) users always arrive early, (II) depending on 
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capacity users can arrive early or late, (III) users always arrive late and incur a queuing delay, 

and (IV) users always arrive late and – depending on capacity – may or may not incur a 

queuing delay. The four situations occur consecutively, and we use 1t , 2t , 3t  to denote the 

watershed lines which separate the four situations. The detailed derivation of departure rates 

in these four situations can be found in Appendix A; we summarize the results below.  

Situation I. Users always arrive early in 0 1[ , ]t t  

In this situation, no commuters experience schedule delay late subject to all possible 

values of the capacity of the bottleneck. The departure rate in this interval is 

 
0 11

1
( ) ,    

ln 


  


s

r t t t t


  
, (10) 

where 0t  is the earliest time with positive departure rate and also the time with zero queue 

length. The boundary condition for this situation is 1( ) 0SDE t   whens s , and we thus 

have 1 0( )R t t s  .  

Situation II. Depending on capacity users can arrive early or late in 1 2( , ]t t  

In this situation, both schedule delay early and late may occur. If the capacity of the 

bottleneck is large enough, only schedule delay early will occur. On the other hand, schedule 

delay late occurs when the capacity is small. The watershed capacity has to generate 

( ) 0T t t  , i.e., 0( )s R t t  . The departure rate in this interval is 

  1 2( ) ,    
ln ( ) 1

r t t t t
A B R t


  

 
, (11) 

where         0 0ln ln lnA t s t s s s                ,    B s s     . 

The boundary condition for this situation is 2 2( ) ( ) 0SDE t SDL t   when s s , and so we 

have 2 0( )R t t s  . 

Situation III. Users always arrive late and incur a queuing delay in 2 3( , ]t t  

Similar to Situation I, in this situation all commuters experience schedule delay late 

despite maximum bottleneck capacity. The departure rate in this interval is 
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2 31

1
( ) ,    

ln

s
r t t t t


   


  


. (12) 

The boundary condition for this situation is  3 3 0( )R t s t t  , i.e., the queuing length at time 

3t  equals to zero when s s . 

Situation IV. Users always arrive late and – depending on capacity – may or may not 

incur a queuing delay in 3( , ]et t  

Similar to Situation II, there is a watershed capacity of the bottleneck such that the 

queuing length falls to zero. The departure rate in this interval is 

     
     

0
3

0

( )
( ) ,   .

ln ( ) ln

   
  

  
e

R t t t s
r t t t t

R t s t t

   
  

 (13) 

The boundary condition for this situation is ( ) 0er t  . Equally, we have  0ˆ( )e eR t s t t  , 

where    ŝ s       . 

PROPOSITION 1. The following inequality holds, 

   0 0 3ˆ ( ) ,   [ , ]es t t R t s t t t t t     . (14) 

PROOF. Since the queue may exist behind the bottleneck for Situation IV, we have 

 0( )R t s t t  , and the numerator of (13) is thus positive. By definition, the departure rate 

is non-negative, and the denominator of (13) must be non-negative. Additionally, we have 

 0ˆ ( )s t t R t  . Since  3 3 0( )R t s t t   and the queue may not exist behind the bottleneck for 

Situation IV, we have  0( )R t s t t  . This completes the proof.  ƶ 

Since the departure rate ( ) 0r t   if et t , the cumulative departure flow at time et  equals 

the traffic demand, i.e.,  0ˆ( )e eR t N s t t   . Therefore, we have 0 ˆet t N s  . Moreover, 

the equilibrium condition of the stochastic bottleneck model implies that 
0[ ( )] [ ( )]eE C t E C t  

0 0ˆ[ ( )]E C t N s t    . Thus, we have 

0
0

1
ˆ 1

N
t

s k



 and 0

0ˆ 1e

kN
t

s k



, (15) 
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where    ŝ s        and 

   
   0

1
1

ˆ ˆln ln

s
k

s s s

  
  

 
 

 
. (16) 

Using the boundary conditions of Situations I, II, and III, we obtain the watershed lines as 

follows: 

1
1

0ˆ 1

kN
t

s k



, 2

2
0ˆ 1

kN
t

s k



, and 3

3
0ˆ 1

kN
t

s k



, (17) 

where 
1

1

ln
1

1
k

   
 


 


, 

 
 2

ln

1
k

    
  

 
 


 and 

  
   3

1
1

1 ln
k

  
    

 
 

  
. 

With the above derived boundary conditions of Situations I-IV, the cumulative departure 

flows of a stochastic bottleneck are given in Figure 1. The earliest time instant for commuters 

leaving home is 0t . It can be seen in Figure 1 that, at the beginning, commuters depart from 

home at a constant departure rate until the watershed time instant 1t . If the capacity of the 

bottleneck equals s , commuters departing at this time instant will arrive at their workplaces 

on time. Afterwards, the departure rate will gradually decrease until the watershed time 

instant 2t . If the capacity of the bottleneck equals s , commuters departing at time instant 2t  

will arrive at their workplaces on time. Thereafter, the departure rate will remain constant 

until the watershed time instant 3t  and the queuing length at this time instant will be zero. 

After 3t , the departure rate continues to decrease with time till zero at time instant et . 

The above analysis is based on the assumption that the bottleneck is severely congested 

due to heavy traffic demand relative to capacity. This assumption can be relaxed. We present 

the analytical results for lighter traffic demand in Appendix B and show that the second time 

period with constant departure rate will disappear if the bottleneck is not very congested. 

So far, we have taken the stochastic capacity as the unique source of travel time variability. 

In practice, travel demand may also be variable. Including an explicit representation of 

stochastic demand to the existing model with stochastic capacity will introduce added 

complexity for the theoretical analysis. Thus in this paper, we consider only the impact of the 
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demand elasticity. The analytical solutions of a stochastic bottleneck with demand elasticity 

are presented in Appendix C. The results show that the length of peak period with elastic 

demand could either decrease or increase with increasing   value, depending on a demand 

sensitivity to cost. 
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Figure 1   Equilibrium departures with stochastic capacity in a single bottleneck 

 

3.4. Properties of the Stochastic Bottleneck Model 

We present the following theorems and propositions to reveal some interesting properties of 

the equilibrium solution of the proposed bottleneck model. 

THEOREM 1. At equilibrium state, the expected trip cost for every commuter is a 

strictly monotonically increasing function of the traffic demand, i.e., 0[ ( )] 0E C t N   . 

PROOF. Since 0 0[ ( )]E C t t    and 
 0

0ˆ 1

N
t

s k



, then  

 0
0

[ ( )]
ˆ 1

N
E C t

s k





,  (18) 

 0
0

[ ( )]
ˆ 1

E C t N
s k


  


. (19) 
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To prove 0[ ( )] 0E C t N   , we only need to prove 01 0k  . Since 0 1   and 

       ŝ s s s               , it can be shown that ˆln ln 0s s   holds. 

Thus, both the numerator and denominator of the second term on the right hand side of (16) 

are positive. Therefore the right hand side of (16) is less than 1. So, 01 0k   holds. This 

completes the proof.  ƶ 

This theorem partly coincides with a property obtained by Fosgerau (2010) who was 

concerned with the marginal external social costs of capacity and demand with a general 

distribution. 

THEOREM 2. At equilibrium state, the departure rate is a monotonically decreasing 

function of the departure time t , 0[ , ]et t t . 

PROOF. See Appendix D. This theorem coincides with Proposition 3 in Lindsey (1994). 

PROPOSITION 2. When the value of the parameter   approaches to one, the stochastic 

bottleneck model follows the deterministic model. 

PROOF. According to the L’Hôspital’s rule, we have 1
1lim ln 0  

   and 

  1
1lim 1 ln 1   

   . Therefore,  

1
ˆlim s s


 , 0 31 1

lim limk k
 


 

   , 1 21 1
lim limk k
 


 

  , (20) 

and 

 
 

0 1

2 3
1

, if 

, i
li

f
)

 
m (

s t t
r

t

s t t t
t



  

  

  

 
 


 (21) 

Substituting (20) into (17), then the watershed times become: 

0

N
t

s


 

 


, 1 2

N
t t

s


  

  


, 3 e

N
t t

s


 

 


. (22) 

Substituting (22) into (21), we obtain the same traffic flow pattern as for the deterministic 

bottleneck model (6). This completes the proof.  ƶ 

PROPOSITION 3. With a fixed number of commuters, enlarging the value of the 
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parameter   will result in a decrease in the length of peak period. 

PROOF. The definition of ̂s  yields:  ˆd d 0s s      . This implies that ̂s  is a 

monotonically increasing function of  . From (15), the length of peak period is as follows: 

0
0

0 0

1
ˆ ˆ ˆ1 1e

kN N N
t t

s k s k s
   

 
. (23) 

Since N is a positive constant, then 0et t  is monotonically decreasing with respect to  . This 

completes the proof.  ƶ 

Under Assumption A3, the stochastic capacity follows a uniform distribution. Let e  be 

the mean capacity and v  a parameter such that  ,s e v e v   . By this definition, we obtain 

s e v  , and    e v e v    . With this new formulation of capacity distribution, we 

obtain the following results. 

PROPOSITION 4. When the value of the parameter v  approaches to zero, the 

stochastic bottleneck model follows the deterministic model. 

PROOF. Since    e v e v    , when the value of the parameter v  approaches to 

zero, the parameter   approaches to one. The rest of the proof is the same as that of 

Proposition 2.  ƶ 

So far, we have provided two formulations of the uniform capacity distribution, i.e. 

 ,s s  and  ,e v e v  . It can be seen that, both the expectation and the variance of the 

bottleneck capacity will change with , whilst only the variance of the bottleneck capacity 

will change with v . Thus, Proposition 4 is slightly different from Proposition 2. 

PROPOSITION 5. With a fixed number of commuters, enlarging the value of the 

parameter v  will result in a decrease in the length of peak period. 

PROOF. Substituting s e v   and    e v e v     into    ŝ s        leads 

to    ˆd d 0s v        . This implies that ̂s  is monotonically increasing with respect 

to v . According to (23), the length of peak period 0et t  is monotonically decreasing with 

respect to ŝ . Therefore, 0et t  is also monotonically decreasing with respect to v . This 
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completes the proof.  ƶ 

 

4. Time-varying Toll  

Arnott et al. (1990b) designed an optimal time-varying toll under a deterministic bottleneck 

capacity. They showed that the toll doesn’t change the schedule delay costs, but can 

completely eliminate the waiting time caused by queuing, and therefore the waiting time cost 

could be replaced by toll charge. Using control theory, Lindsey (1994, 1999) derived the 

optimal pricing with stochastic bottleneck capacity condition. In this section, we investigate a 

time-varying toll in the case of a stochastic bottleneck capacity and a constant departure rate 

over a fixed peak period (which is set to be the same as the peak period without toll). We 

show that under this tolling scheme, the queues can be reduced significantly but not 

eliminated completely unless the capacity is constant. 

4.1. A Time-varying Toll Scheme  

Let commuters depart at a constant rate    ˆr s s        . (7) gives the expected 

travel cost function at departure time t  in the absence of toll. Hence, the time-dependent toll 

can be formulated as 

   ( ) ( ) ( )t E C t E c t   , (24) 

where the lowercase ‘ c ’ stands for the expected travel cost exclusive of the toll. Because a 

constant departure rate is used and the mean trip cost is kept unchanged, this scheme may 

or may not be the first-best toll; therefore the optimal control theory method used by 

Lindsey (1994, 1999) to solve the time-varying toll problem is not required here. 

Similar to the analysis for the no-toll equilibrium in Section 3, the morning commuting 

problem with time-dependent toll can be analytically investigated for the following three 

situations, each corresponding to a time interval: (I) users always arrive early, (II) depending 

on capacity users can arrive early or late, and (III) users always arrive late and incur a queuing 

delay. In all three situations, queue may exist depending on the capacity value. Let 0t  and et  

have the same definitions as in the previous section, 1t  and 2t  now define the watershed time 
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points between the above three situations. With a constant departure rate, i.e., ˆ( )r t s , 

0[ , ]et t t , the cumulative departures at time t  can be easily computed as, 

 0ˆ( )  R t s t t . (25) 

Substituting (25) into (2), the queue length becomes, 

   0ˆ( ) max ,0 ,   [ , ]Q t s s t t s s s    . (26) 

Substituting (3), (25) and (26) into (4), we can obtain the expected trip cost in the absence of  

toll, for each of the three time intervals separately. 

Let   0( )E C t t   , the time-varying toll can be formulated as a piecewise function, 

corresponding to the three time intervals 0 1[ , ]t t , 1 2[ , ]t t  and 2[ , ]et t  as,  

    
       

    
2 3 4

0 1 0 1

0 1 0 0 0 1 2

5 2

0

0 0

,     [ , ]

,   [ , ]

,    [ , ]

( )  



   
      

 

 

 

   e

t t t t t t

t t t t t t t t t

t t t

t

t t

t t t

  

   

   

  

  

 

 (27) 

where     1 ˆˆ ln ln( ) (1 )ˆ    ss s s ss    ,      2 0 0ˆ ln ln (1 )    s t t t s s  , 

 3 (1 ) s s   ,       4 0 0ˆˆ ln ( ) ln 1 (1 )    ss t t t s s   ,    5 ˆln ln( ) 1  s s   . 

The detailed derivation of the time-varying toll is given in Appendix E. It can be proved 

that as the value of   approaches one, ( )t  becomes the one with deterministic capacity as 

derived by Arnott et al (1990b).  

Lindsey (1994, 1999) proved that a socially optimal departure rate can be decentralized 

using a time-varying toll. He showed that, in a special case of a two-point distribution of 

capacity, when a time-varying toll is used to support the social optimum, the expected 

individual trip cost is greater than or equal to that in the absence of toll. We herein follow the 

first-best system optimum strategy designed for the deterministic bottleneck (Arnott et al., 

1990b) and develop a time-varying toll for the constant departure rate over the peak period 

which maintains the same mean individual trip cost. Thus, the proposed time-varying toll is in 

fact a second-best system optimum strategy for the studied stochastic bottleneck. However, 

such a tolling scheme may be more acceptable since the concept of the mean value is closer to 
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reality. 

4.2. Properties of the Time-varying Toll 

This section presents the properties of the equilibrium solution under the time-varying toll. 

We use subscript  to denote parameters or variables associated with this pricing scheme. 

PROPOSITION 6. Under the time-varying pricing scheme, the equilibrium solution 

results in shorter queue length and shorter travel time than no-toll scheme, i.e., ( ) ( )Q t Q t   

and ( ) ( )T t T t   and the toll is non-negative, i.e.,  toll ( ) 0t , 0[ , ]  et t t . 

PROOF. In Section 3, for time interval 
0 3[ , ]t t , the stochastic bottleneck was depicted as 

a congested commuting system in which the inequality  0( )R t s t t   holds. In time interval 

3[ , ]et t , commuters may experience queue only, yet we have the inequality  0ˆ( )R t s t t  . 

Hence, the inequality  0ˆ( )R t s t t   is always true during the peak period. Comparing (2) 

with (26), we have 

      0 0ˆ( ) max ( ) ,0 max ,0 ( ),   [ , ]Q t R t s t t s s t t Q t s s s         . (28) 

Substituting (28) into (3), we get the inequality ( ) ( )T t T t . 

Considering the mean trip cost function, we have 

         ( ) ( ) ( ) ( ) ( )E C t E T t T t t T t t E T t t                        

   ( )E T t t            

   ( ) ( ) ( ) ( )E T t T t t T t t E c t                  

So,    ( ) ( ) ( ) 0  t E C t E c t  holds. The above completes the proof.  ƶ 

PROPOSITION 7. At either no-toll equilibrium or time-varying toll equilibrium, the 

expected queuing time is identical for the last commuter who leaves home at time et . 

PROOF. The cumulative departures at time et  is  0ˆ( )e eR t s t t   at both equilibrium 

states, and the queuing time for commuters who leave home at time et  equals 
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     0 0ˆ( ) max ,0e e eT t s t t s t t s    . Although departure rates are different in these two 

equilibrium conditions, their expected travel times are identical, i.e.,  

    1
0( ) max ( ) ( ) ,0e e eE T t E s R t s t t      

    0

( ) ˆ
1 1

0 0 0ˆ( ) ( )d ( )d
e

e

R t
s

t t
e e e es s

s R t t t f s s s s t t t t f s s
 

          

   1
0ˆmax ,0 ( )e eE s s s t t E T t

          . 

This completes the proof.  ƶ 

The above proof was based on a uniformly distributed capacity function. Here, we 

consider more general distribution functions for the bottleneck capacity. Let ( )f s  be a 

general probability density function of the bottleneck capacity and ŝ  the average capacity of 

the bottleneck realized in no-toll equilibrium. We assume that the departure rate is a non-

increasing function of time t . Under this assumption, if the capacity is larger than ŝ , then 

both the queuing length and the queuing time of the last commuter will be zero. Then, 

   
ˆ

1
00

( ) ( ) ( ) ( )d  
s

e e eE T t s R t s t t f s s  and 
ˆ

1
00

ˆ( ) ( )( ) ( )d      
s

e eE T t s s s t t f s s holds. 

Since  0ˆ( )e eR t s t t  , then  ( ) ( )e eE T t E T t    . Therefore, Proposition 7 continues to 

hold when the bottleneck capacity follows other distribution functions. 

In summary, under time-varying toll scheme, the peak-period does not change and the 

flow pattern is similar to that achieved in deterministic social optimum. However, queuing 

delay and capacity underutilization can occur at any time.  

 

5. Single-step Coarse Toll 

The toll scheme formulated in Section 4 varies continuously over time. Such a complex 

pricing structure is not very well accepted by travelers as they cannot predict the amount of 

charging they would have to pay in advance. This impels researchers to develop more 

practical tolling schemes, including one that varies in steps over time. In the context of 

bottleneck problems, Arnott et al. (1990b) studied a simple step toll, which has a positive and 

constant value during a certain interval and zero otherwise. This has been referred as a single-
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step coarse toll in the literature. If   , some drivers depart after the mass. This is the case 

considered by Laih (1994). If   , no drivers depart after the mass which is the case 

considered by Arnott et al (1990b). As explained by Arnott et al (1990b), the reason for a 

mass of departures immediately after the toll has been lifted is due to the fact that the last 

person to arrive before the toll is lifted must have the same trip cost as the first person to 

arrive after the toll is lifted. The latter must therefore incur an additional travel time plus 

schedule delay costs which are equal to toll, and as such is  higher than the former. This is 

impossible unless there is a mass of departures just after the toll is lifted. According to 

empirical results (Small, 1982), the shadow value of one minute late is significantly larger 

than the shadow value of travel time, and hence we treat only the case    here, i.e., no 

driver chooses to depart after the mass. 

Similar to Arnott et al (1990b), we introduce here a coarse toll into the bottleneck model 

with stochastic capacity. It is assumed that a coarse toll equilibrium exists with capacity  , 

[ , ]s s  . Commuters departing in interval [ , ]t t   will be charged by a fixed toll  , here 

t   and t   denote the starting and ending points of the toll, respectively. The objective, in the 

following subsection, is to find the optimal fee and time interval based on capacity  , 

[ , ]s s  . 

5.1. Equilibrium Departure Pattern with a Coarse Toll  

Intuitively, when the toll is set too high or the charging time interval is too long, there could 

be times when no one utilizes the bottleneck. We aim to derive the optimal toll and the 

optimal charging interval which would minimize the total travel cost of the commuting 

system. 

We divide all commuters into three groups: 0N  commuters who go through the bottleneck 

before the tolling period; 1N  commuters who have to pay a constant toll when passing 

through the bottleneck; and 2N  commuters after the tolling period. 
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Case I. Before tolling period 0[ , ]t t  

Under equilibrium, the mean trip cost of the last commuter who does not need to pay the 

toll should be the same as the trip cost of the first commuter who does. For this to happen, 

there must be a period which has no departures between the two time instances that the above 

two commuters departed. This corresponds to a scenario whereby, early in the morning, 

commuters depart at a high rate and pay no toll. This departure rate is the same as that in the 

no-toll equilibrium. Then, commuters cease to depart for a while and the queue dissipates 

gradually as travelers are being served by the bottleneck. In equilibrium, the expected trip cost 

of every commuter should be the same as that experienced by the first commuter, i.e.,  

  0( )E C t t   , (29) 

where 0t  denotes the departure time of the first commuter under the single-step course toll 

regime. The departure rate follows that given by (10) and the boundary condition for this 

group of commuters is:  

 0 0N t t    , (30) 

where [ , ]s s   is the bottleneck capacity. In equilibrium,  0( ) ( , )E EC t c t      , where 

( , )E c t     is formulated in Appendix F. Therefore, the relationship between 0t , t
  and   

can be formulated as follows: 

 0t t


   
  

 
. (31) 

where        ln ln 1    s s s       .  

Case II. During tolling period [ , ]t t   

Commuters start to leave home when the progress of queue dissipation extends to the 

starting point of the toll, t  . In the deterministic bottleneck model, the optimal single step toll 

is timed such that the queue has just disappeared by the time the toll kicks in. While, for the 

stochastic model, the time when the coarse toll is lifted is based on the capacity  . The latter 

does not represent the maximal capacity of the bottleneck, therefore the queue may not be 



 

21 
 

eliminated completely. In this case, the toll is constant and hence does not affect the departure 

rates. Then, when heavy congestion exists, we can derive the departure rates in four scenes as 

in Section 3: (i) users always arrive early, (ii) depending on capacity users can arrive early or 

late, (iii) users always arrive late and incur a queuing delay, and (iv) users always arrive late 

and – depending on capacity – may or may not incur a queuing delay. These four scenes occur 

consecutively, and we denote 1t , 2t , 3t  as the new watershed lines which separate the four 

scenes. 

Here, we present the departure rate functions for the first three intervals. The methods 

used to obtain these functions are similar to those used in the no-toll equilibrium.  

11

(1 )
( ) ,    [ , ]

ln

s
r t t t t

 
  




  


, (32) 

    1 2,    [ , ]
ln ( ) 1

r t t t t
A B R t

   
 

,  (33) 

where A  and B  are those defined in (11), and 

 
2 31

1
( ) ,     [ , ]

ln

s
r t t t t


   


  


. (34) 

In the fourth interval 3[ , ]t t t , there is no schedule early but queue possibly exists. 

Considering the boundary condition ( ) 0r t   and the possible results of the bottleneck 

capacity  , we have 

   

   

0 0
3

3
0 0

( ) ( ) ˆln ,   for [ , ],  if 

( )
( ) ( )ˆ ln ,   for [ , ],  otherwise

ˆ 
 



      
    
 

      

R t N R t N
t t t s

t t t t s
r t

R t R t
s t t t

t t t t s

s 




 (35) 

The total number of commuters in [ , ]t t   is 

 
   1

0 0

ˆ ˆ,  if 

ˆ ,   otherwise

s t t s
N

s t t t t





 

 

   
   

 (36) 

In order to derive the optimal charging time interval, we design a pricing scheme as 
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follows: 

 ( ) ( , )E C t E c t      , (37) 

 ( ) ( , )E C t E c t      . (38) 

In equilibrium, commuters will have the same travel costs, i.e., ( , ) ( , )E c t E c t          

holds for any value of   under the coarse toll scheme. Following the definitions of 

[ ( , )]E c t   and [ ( , )]E c t   in Appendix F, we derive the relation between t   and t   as 

follows: 

For ŝ  ,  

 
    

 

t

t

   
   

   
   






  

 


 
. (39) 

For ŝ  ,  

   
    

 

t

t

     
    

   
   





  
  

 


 
.  (40) 

where 
   

 
ln ln( )

1

s s

s

    



  




 and 
   

 
ˆ ˆ ˆln ln( )

1

s s s s s

s

 



  




. It can be seen that 

the ending time of the toll depends on the starting time of toll, the toll itself and the capacity 

 .  

Case III. After tolling period  

The toll is applied at t   and lifted at t  . In the deterministic case, t  , t   and   should be 

chosen so that the queue is zero at the moment the toll is applied and also immediately before 

it is lifted (Arnott et al. 1990b). To achieve equilibrium, there is a period    adjacent to the 

instant t   without any departures, while a mass of individuals departs immediately after the 

instant t  . Arnott et al. (1990b) showed that in the deterministic model, the relation between 

the toll and the size of the mass was    2 2N s    . Similarly, in the stochastic model, 
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it can be shown that  

  2 ( )d
2

  
s

s

N
f s s

s
   , (41) 

where ( )f s  is the probability density function of the bottleneck capacity. Then, for a 

uniformly distributed capacity function, the number of commuters departing after the toll 

becomes: 

 
  2

2 1

ln ln

s
N

s s

 
  



 

. (42) 

Using the conservation condition 2 0 1N N N N   , and substituting (30) and (36) into (42), 

the toll start time can be found as: 

2

1

N
t

 


 
 , (43) 

where 

 
 1

ŝ 


   



 

, 

 
   

   
   

 
   

 
   

2

ˆ2 1 1 ˆ,    if ,
ln ln

ˆ ˆ2 1 1
,   otherwise

ln ln

s s
s

s s

s s s

s s

        


          


    
          

    
        

         

 

Hence, once the coarse toll and the parameter   are given, we can get t   by (43), t   by (39), 

2N  by (42), 0t  by (31), 0N  by (30), 1 0 2N N N N   , as well as departure rates in all 

intervals corresponding to the three cases discussed above. Clearly, to minimize the total 

travel cost of the system, the coarse toll and the parameter   should be optimized.  

5.2. An Optimal Coarse Toll 

In this subsection, we try to find an optimal coarse toll scheme under stochastic capacity in 

the bottleneck model. Firstly, we design a system in such a way as to minimize the expected 

system trip cost  ,G   , excluding toll, as follows: 

  1min  ( , ) ( )G E C t N N    , (44) 
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where [ ( )]E C t  refers to the mean trip cost,   the toll  and 10, 0N N  . Substituting (29) 

and (31) into (44), and observing the conservation rule 1 0 2N N N N   , we can rewrite the 

system trip cost as  

0 2( , ) ( )
( )

G N t N N N
   

   
 

        
. (45) 

Replace 0N  and 2N  by (30) and (42) respectively, and note 
 0t t


   

  
 

, Equation 

(45) becomes 

2( ) 2 (1 )
( , )

( ) ( ) (ln ln )( )

s
G Nt N

s s

        
          

   
           

. (46) 

Let the first-order partial derivative with respect to t   be zero,  

( , )
0





G

t

 
. 

 (47) 

Substitute (43) into (47) and note 1 2t      , we obtain 

 
2 2 1

2

( ) N
N

     
   


 

 
 

   
 

  1 1

2 1
2 0

ln ln

s
N t

s s

 
      

  
         

. (48) 

From (48), the optimal t   can be derived as follows:  

1( )t g N  ,  (49) 

where 
 
   

 
  

2
2 1 2

1 2
11

2 2 1 1
( )

ln ln2

s
g

s s

       
           

    
      

        
.  

Substitute (49) into (43), the optimal coarse toll is, 

2( )g N  , (50) 

where 1 1
2

2

1 ( )
( )

g
g

 



 .  

Finally, substitute (30), (31), (36), (49) and (50) into (44), the expected system travel 



 

25 
 

cost (excluding toll) is worked out as follows: 

2( , ) ( )G g N   , (51) 

where 
 

   
 

  
2

1 2 2

2 1
( ) ( ) ( ) ( )

ln ln

s
g g g g

s s

       
          

               
. 

The method to study the case of   , i.e., some drivers depart after the mass, is similar 

to the above (see Appendix G, for details). 

The efficiency of the optimal single-step toll subject to stochastic capacity   can be 

measured as follows: 

= NT

NT TV

TC TC

TC TC






, (52) 

where NTTC  and TVTC  are the system’s total travel cost (excluding toll) generated under a no-

toll scheme and a time-varying toll scheme respectively, and TC  is the same as  ,G    

which is defined in (44). The subscript   denotes the single-step coarse toll scheme. Also, the 

efficiency of the single-step coarse toll based on optimal capacity can be compared with the 

efficiency based on average capacity. However, it would be extremely difficult to obtain the 

relative cost reductions analytically for any  -value in [ , ]s s  . In the following section, 

we will numerically investigate   and the relative efficiency. The results are presented in the 

last two columns in Table 4 and in Figure 11.  

PROPOSITION 8. The optimal   determined by system optimal equilibrium is 

independent of N . 

PROOF. From the above analysis, the function of the system travel cost excluding toll 

can be formulate as 2( , ) ( )G g N   . In order to obtain the optimal  -value, we have to let 

the partial derivative of this function with respect to   be zero, i.e.,  2( ) 0  g N  . This 

means ( ) 0g     . Since ( )g   is independent of N , so is the optimal value of  . This 

completes the proof.  ƶ 
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PROPOSITION 9. In equilibrium, the earliest departure time 0t  under the single-step 

coarse toll scheme is larger than that without toll, when parameter   approaches to one. 

PROOF.  The earliest departure time without toll when parameter   approaches to one 

has been shown in (22), i.e., 0

N
t

s


 

 


. In the stochastic bottleneck model with single-

step toll, letting   approach to one, we have 
   

 1 1

ln ln
lim lim 0

1

s s
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 and 

   
 1 1

ˆ ˆ ˆln ln
lim lim 0
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s s s s s
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. Then, 11 1
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lim lim

( )

s
s

 

   
     

 
 

 
 and 

21

2 1
lim s



  

 
   

. Substituting them into the relevant equations presented in this 

section, we get 
 2

N

s


 




, 
    0

N
t

s

   
     

   
  

, 0t t



   , t t



   , 

and 2

2

( )

s
N


 




. This clearly shows that 

0 0

( )

( ) ( )( ) ( )

N N
t t

s s

      
       

     
   

. 

Hence, 0 0t t   when   approaches to one. This completes the proof.  ƶ 

Proposition 9 presents another interesting result. That is, in equilibrium, the mean trip cost 

generated by the optimal single-step coarse toll is less than that generated by no-toll 

equilibrium, when parameter   approaches to one. According to Proposition 2, the proposed 

stochastic bottleneck model becomes the deterministic model when the value of parameter   

approaches to one. Hence, Proposition 9 also holds for the deterministic bottleneck model. It 

should be noted, however, that this result does not always hold for other   values. In the next 

section, we present numerical examples (in Table 3) to illustrate this result. 
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Figure 2   Mean trip cost and its components in no-toll equilibrium 

 

6. Numerical Examples 

In this section, we present numerical results for the stochastic bottleneck model without toll, 

with a time-varying toll, and with a single-step coarse toll. Unless otherwise specified, 

throughout this section, we adopt the following three parameter values from Arnott et al. 

(1990b): 6.4  $/hr, 3.9  $/hr, 15.21  $/hr, and consider the situation with 

6000N  veh, 4000s  veh/hr and 0.9  . 

6.1. No-toll Equilibrium in the Stochastic Bottleneck 

The differential equations (11) and (13) are solved by the Euler method with step size equal to 

0.005. Figure 2 shows the mean trip cost, mean travel time cost and the mean schedule delay 

and early costs (SDE and SDL). It can be seen in Figure 2 that the mean trip costs of all 

commuters are the same and equal to 4.98, but the commuters would endure a trade-off 

between the cost of travel time and the cost of schedule delay. Note that the SDE and SDL 

curves cross at a point where their costs are none zero and the travel time cost at the crossing 

point does not reach the highest point. It is also worth noting that the waiting time cost is none 

zero at the end of the peak period, which means that the queue still exists. 

It is also interesting to investigate the impact of parameter   on the solution of the 
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stochastic bottleneck model. We change the  -value from 0.75 to 1.0 and solve the resultant 

models. Table 1 lists the mean trip costs and the watershed time instants for different   

values. It can be seen that 1 2t t  and 3 et t  when 1.0  . This confirms Proposition 2. We 

can also find from this table that the length of peak period increases as the  -value decreases. 

This is consistent with Proposition 3. Since decreasing the  -value is equivalent to increasing 

the travel time uncertainty, this means that commuters would leave home earlier to avoid 

potential losses due to larger uncertainty. 

Table 1   Influence of parameter   on the mean trip cost and the watershed time instants 

  E[C]  0t   1t  2t   3t   et   0et t   

1.00 4.66 -1.19 -0.73 -0.73 0.31 0.31 1.50 
0.95 4.81 -1.24 -0.76 -0.64 0.26 0.29 1.53 
0.90 4.98 -1.28 -0.80 -0.55 0.21 0.27 1.55 
0.85 5.16 -1.32 -0.85 -0.43 0.16 0.25 1.57 
0.80 5.36 -1.37 -0.90 -0.31 0.11 0.22 1.59 
0.75 5.58 -1.43 -0.95 -0.14 0.05 0.19 1.62 

 

Figure 3 depicts the departure rates for different  -values. One can observe from the 

figure that the stochastic bottleneck model follows the deterministic model when the  -value 

approaches to one. This is also consistent with Proposition 2. Figure 3 also shows that in 

equilibrium the departure rate during the peak period is monotonically decreasing with time, 

which is consistent with Theorem 2. 
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Figure 3   Influence of parameter   on departure rate 
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Figure 4   Equilibrium departure rate for different v  values 

 

It is interesting to see the influence of the capacity variation on commuters’ departure time 

choice. Consider  ,s e v e v    and let the mean capacity e=3000veh/hr, and we solve the 

resultant models with different v  values. The resulted equilibrium departure rates are shown 

in Figure 4. It can be seen that the departure rates converge to that of the deterministic 

bottleneck model when the v -value approaches to zero, which is consistent with Proposition 

4. One can also observe from Figure 4 that the equilibrium departure rate during the peak 

period is monotonically decreasing with time, which is consistent with Theorem 2. 

Table 2 presents the mean trip cost and the watershed time instants with different v -

values. It can be seen that the length of the peak period decreases with increasing v -value. 

This result is consistent with Proposition 5, and suggests that commuters would leave home 

earlier when capacity variation increases.  

Table 2   Influence of capacity variation v  on the mean trip cost and the watershed time instants 

v   ( )E C t   0t   1t  2t   3t   et   0et t   

0.00 4.46 -1.19 -0.73 -0.73 0.31 0.31 2.00 
100.00 4.70 -1.20 -0.75 -0.63 0.26 0.28 1.48 
200.00 4.73 -1.21 -0.76 -0.53 0.21 0.26 1.47 
300.00 4.77 -1.22 -0.78 -0.43 0.16 0.23 1.45 
400.00 4.81 -1.23 -0.80 -0.32 0.12 0.21 1.44 
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6.2. Time-varying Toll in the Stochastic Bottleneck 

We now consider a time-varying toll in the stochastic bottleneck. Figure 5 depicts the mean 

travel times before and after implementing the time-varying toll for different  -values. The 

no-toll travel times have a concave profile with the travel time peaked in the middle of the 

departure time period, whilst the travel times under time-varying toll are linearly increasing 

with departure time. It can also be seen that the travel time with tolling are significantly lower 

than those without tolling, suggesting that the time-varying toll can significantly reduce the 

commuters’ travel time and the queue behind the bottleneck. Specifically, the queue can be 

completely eliminated when the  -value equals one. The mean travel time of the last 

commuter does not change, no matter whether the toll is applied or not. This is consistent with 

Proposition 7. The time-varying tolls for four different  -values are shown in Figure 6. The 

results confirm the Proposition 6, i.e., the time-varying tolls are nonnegative.  
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Figure 5   Travel time distributions with departure timeunder no-toll (the upper concave profiles) and time-varying 

toll (the lower linear distributions)  
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Figure 6   Time-varying toll for different   values 

 

6.3 Single-step Coarse Toll in the Stochastic Bottleneck 

For any given  -value, the system’s total travel costs against parameter   and the minimum 

are shown in Figure 7(a). The numbers in brackets represent the optimal  -value and the 

corresponding total system travel cost. We can see that the total travel cost decreases as  -

value increases. When the  -value is one, the optimal departure rate equals the maximal 

capacity. This result coincides with that of a single-step coarse toll in the deterministic 

bottleneck model.  

For comparison, we solve the bottleneck model for an increased total number of 

commuters, i.e., letting 7000N veh. The results are presented in Figure 7(b) and they show 

that, whilst the total system travel costs increased with larger N  value, the optimal  -values 

do not change with N  value. This is consistent with Proposition 8.  
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Figure 7   Total travel cost for different   and N  values 

 

We further investigate the difference between the earliest departure time with the single-

step coarse toll and that without, as denoted by 0 0t t  . Figure 8 shows the variation of 0 0t t   

with different values of  ,   and  . Figure 8(a) shows that the value of 0 0t t   can be either 

positive or negative when 0.7  , implying that the single-step coarse toll can either increase 

or decrease the commuters’ travel cost when capacity variation is large. However, Figure 8(b) 

shows that the value of 0 0t t   is always positive when 1.0   (i.e., the deterministic 

bottleneck model), which is consistent with Proposition 9. Hence, the optimal single-step 

coarse toll can reduce the commuters’ trip cost in the deterministic bottleneck model (as has 

been reported in Arnott et al. (1990b)), whilst for stochastic bottleneck, the toll can either 

reduce or increase the trip costs.  
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Figure 8   Difference between the earliest departure time with a single step coarse toll and that with no toll 
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Figure 9   Cumulative departures with different parameters of single-step coarse toll in equilibrium 

 

Figure 9 illustrates two examples in which the single-step coarse toll can either advance or 

postpone the earliest departure time. In Figure 9(a), with input data of 6.4  $/hr, 

1.0  $/hr, 8.5  $/hr, 0.7  $/hr, 4000s  veh/hr and 6000N  veh, it can be seen that 

the earliest departure time is advanced (i.e., moved earlier) after imposing the single-step 

coarse toll. Whilst in Figure 9(b), with the input data of 6.4  $/hr, 3.9  $/hr, 

15.21  $/hr, 0.9  , 4000s  veh/hr and 6000N  veh, the earliest departure time is 

postponed when the single-step coarse toll is implemented. 
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Finally, we present in Table 3 the commuters’ mean trip cost and in Table 4 the 

system’s total travel cost (excluding toll) when schemes of no toll, time-varying toll and 

single-step coarse toll are separately applied in the stochastic bottleneck model. We can see 

that both the system total cost and the individual mean trip cost increase with increasing 

variation of the bottleneck capacity, regardless of the schemes adopted. This is consistent with 

the theoretical analyses conducted in earlier parts of the paper. For all  -values analyzed, the 

time-varying toll scheme leads to the lowest system total cost, followed by the single-step 

coarse toll scheme, whilst the non toll scheme generates the highest cost. The numerical 

results in Table 3 also confirm that the time-varying toll does not change the individual’s 

mean trip cost, but the single-step coarse toll can reduce the individual’s mean trip cost. With 

smaller  -values (i.e. larger capacity variations), the reduction becomes smaller. Table 4 also 

presents the results for the single-step coarse toll scheme under an average capacity and as 

expected, the system total travel costs under the optimal capacity are less than those under the 

average capacity.  

Table 3   Individual mean trip cost under three schemes 

Individual’s mean trip cost ($) 

  
Non toll 

 
Time-varying toll 

 

Single-step coarse toll 

Optimal capacity Average capacity 

1.00 4.66 4.66 4.46 4.46 
0.95 4.81 4.81 4.62 4.61 
0.90 4.98 4.98 4.79 4.77 
0.85 5.16 5.16 4.98 4.95 
0.80 5.36 5.36 5.18 5.14 
0.75 5.58 5.58 5.40 5.34 

 

Table 4   System total travel cost under three schemes and the efficiency of a coarse toll 

  

System’s total travel cost (excluding toll) ($) 
Efficiency of a single-

step coarse toll 

Non toll 
Time-varying 

toll 

Single-step coarse toll Optimal 
capacity 

Average 
capacity Optimal capacity Average capacity 

1.00 27936.74 13968.37 20371.48 20371.48 54.2% 54.2% 
0.95 28875.50 14738.73 21102.19 21125.88 55.0% 54.8% 
0.90 29886.84 15612.44 21892.74 21944.14 56.0% 55.6% 
0.85 30980.29 16598.36 22751.38 22835.26 57.2% 56.6% 
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0.80 32167.25 17718.53 23688.03 23810.14 58.7% 57.8% 
0.75 33461.50 19000.82 24714.74 24882.04 60.5% 59.3% 

 

Figure 10 shows the percentage reduction in total travel cost (excluding toll) generated 

by single-step coarse toll scheme based on optimal capacity and average capacity, as a 

function of  . The percentages are computed by using (52). It can be seen that the scheme 

based on average capacity produces consistently smaller cost reduction than the scheme based 

on the optimal capacity, and the difference increases with decreasing   value. At  =0.75, 

the difference is 1.2%. As the parameter   approaches to one, the differences disappears, and 

the efficiency   value under both schemes is 54.2% (see Table 4).  

It is of interest to make a sensitivity analysis of the model parameters on the relative 

efficiency gains of the different capacity-based coarse tolls. With the default values of 

6.4   $/hr, 3.9   $/hr, 4000s veh/hr, 6000N  veh, we let the ratio    vary from 

0.5 to 4. Figure 11 plots the relative efficiency of the average capacity-based single-step 

coarse toll to the optimal capacity-based toll, i.e., a o   where the subscripts a  and o  

denote the average capacity and the optimal capacity respectively.   (  or  a o ) is defined 

in (52). It can be seen that the ratio approximates to 1 when    is around 1.5.  

Finally, Table 5 summaries the system’s total toll revenues under two tolling schemes in 

a stochastic bottleneck model (with random capacity following a uniform distribution) vs a 

deterministic bottleneck model (with a fixed average capacity). It can be seen that the total 

revenue under both tolling schemes, regardless of the capacity models used, always increases 

with decreasing value of  . This suggests that a decline in capacity will increase the revenue 

collected from tolling. Under a time-varying toll scheme, the revenue collected from a 

stochastic bottleneck model is less than that from a deterministic bottleneck model with 

average capacity. However, the contrary is true under a single-step coarse toll scheme. 
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Figure10   Percentage reduction in travel cost (excluding toll) due to coarse toll as a function of   
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Figure 11   Efficiency gain from a coarse toll upon average capacity against that upon optimal capacity 

 

 

Table 5   System total toll revenue under two tolling schemes 

  

Random 
capacity  

ŝ  

Average 
capacity  

 1 2s   

System’s total toll revenue ($) 

Time-varying toll  Single-step coarse toll 

Random Average Optimal Average 
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capacity capacity capacity capacity 

1.00 4000.00 4000.00 13968.37 13968.37 6403.10 6403.10 
0.95 3940.77 3900.00 14136.72 14326.53 6618.98 6567.28 
0.90 3881.54 3800.00 14274.40 14703.54 6850.45 6740.10 
0.85 3822.30 3700.00 14381.94 15100.94 7099.30 6922.27 
0.80 3763.07 3600.00 14448.73 15520.41 7378.83 7114.55 
0.75 3703.84 3500.00 14460.68 15963.84 7672.92 7317.83 

 

7. Conclusions 

In this paper, we have extended the well-known Vickrey’s bottleneck model for studying the 

commuters’ departure time choice behavior with a stochastic bottleneck capacity. We assume 

the bottleneck capacity follows a uniform distribution and the commuters’ departure time 

choice follows UE principle in terms of their mean trip cost. Analytical solutions of the 

stochastic bottleneck model have been  derived, and numerical results for a range of different 

scenarios produced. Both analytical and numerical results show that the consideration of 

capacity uncertainty increases the commuters’ mean trip cost and lengthens the peak period.  

Further more, we have developed two tolling schemes for the stochastic bottleneck model, 

namely the time-varying toll and the single-step coarse toll. We have shown that the proposed 

piecewise time-varying toll is non-negative and can effectively reduce, even eliminate when 

the capacity is constant, the queues behind the bottleneck. We have also found that the single-

step coarse toll may either advance or postpone the earliest departure time. The numerical 

results demonstrate that the system total travel costs (excluding toll) decrease under both 

pricing schemes, suggesting that the schemes improve the efficiency of the stochastic 

bottleneck. 

In our future work, we plan to further extend the stochastic bottleneck model to consider 

commuter heterogeneity, risk preference, demand uncertainty, multiple transport modes and 

flexible work start times. 
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Appendix A: Derivation of the departure rates in four time intervals  

There are four departure time intervals to consider. In 0 1[ , ]t t , there is no schedule delay late, the 

expected travel cost is 

  0 0

( ) ( )
( ) ( )d ( )d ,           

    s s

s sR t R t
E C t t t f s s t f s s

s s 
   

where ( )f s  is the probability density function of the stochastic capacity, and  ( ) 1f s s s  . At 

equilibrium,  ( )E C t  must be constant, i.e.,  d ( ) d 0E C t t  which directly leads to 
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In 1 2( , ]t t , both schedule delay early and late may occur, we then have 
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At equilibrium, i.e.,  d ( ) d 0E C t t , the above leads to 

  1 2( ) ,    
ln ( ) 1

r t t t t
A B R t


  

 
, 

where       0 0ln ln ln ( )A t s t s s s                 and    B s s     .  

In 2 3( , ]t t  with no schedule early, we have 

  0 0

( ) ( )
( ) ( )d ( )d          

    s s

s sR t R t
E C t t t f s s t f s s
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At equilibrium, we get 
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In 3( , ]et t , there is no schedule early but a queue may exist. We can find a watershed capacity of 

the bottleneck such that the queuing length equals zero, i.e.  0( )R t s t t  , and hence the watershed 

capacity is  0( )R t t t . We then have 
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The equilibrium condition leads to 
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Appendix B: Analytical results for light traffic demand 

Following the method for analyzing the case of heavy traffic demand, here we investigate the four 

possible situations for light traffic demand during the peak period. We use 1t , 2t  and 3t  to denote the 

watershed lines of these four situations. The corresponding departure rates in these four time intervals 

are directly given as follows. 

In 0 1[ , ]t t  with no schedule late, we have     1( ) ( ) 1 lnr t s         and the boundary 

condition 1( ) 0SDE t  . 

In 1 2( , ]t t  with possible schedule either early or late, we have   ( ) ln ( ) 1r t A B R t    and 

the boundary condition  2 2 0( )R t t t s   when s s ; 

In 2 3( , ]t t  with possible schedule either early or late and a possible queue, we have 

     
           

0

0 0

( )
( )

ln ( ) ln ln

R t t t s
r t

R t s t t t

   
      

   


      
. 

The boundary condition is ( ) 0r t  , if 0t  . Correspondingly, we have 3( ) 0r t   and 

 3 3 0( )R t s t t  , where    s s        and hence 3 et t . If ( ) 0r t  , 0t  , the 

boundary condition is then 3 0t  . 
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In 3( , ]et t , there is no schedule early but a queue may exist. The departure rate in this interval is 

     
     

0

0
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ln ( ) ln

   


  

R t t t s
r t

R t s t t

   
  

. 

The boundary condition is ( ) 0er t  . Similarly, we have  0ˆ( )e eR t s t t  , where, 

 ˆ ( )s s       . 

Comparing the above results with those for heavy traffic demand, we can see that the difference 

only occurs in the third possible situation. This suggests that commuters who are confronted with no 

schedule early and a queue would switch to the interval with possible schedule delay and possible 

queue because the system is not very congested. 

 

 

Appendix C: Impact of demand elasticity 

To simplify the analysis, the following linear demand function is adopted: 

 0 0 ,N N b C C    

where 0N  and 0C  are the reference demand and the reference trip cost respectively, b  is a positive 

parameter which reflects the sensitivity of traffic demand to trip cost, and C is the mean trip cost. 

When b  approaches zero, it becomes the case of fixed demand, and when b  tends to infinity, it 

becomes the case of perfectly elastic demand. 

Substituting equation (18) into the above demand function and rearranging the equation, we obtain 

the total number of commuters as: 

 
0 0

0ˆ1+ (1 )





N bC

N
b s k

. 

Substituting the above result into equation (23), we get the length of peak period,  

0 0
0

0ˆ (1 )ˆ


  
 e

N bCN
t t

s b ks 
. 

Define  0ˆ( ) 1u s b k    . Substituting 0k  given in equation (16) and    ŝ s        

into ( )u  , we can obtain the first order derivative of ( )u   with respect to  ,  
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The first term of the above equation’s right hand side is positive. In order to understand the second 

term, we denote       ˆ( ) ln ln 1v s s            and derive its first order derivative 

with respect to  , 
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Clearly ( ) 0v    holds because ˆs s  . Therefore, ( )v   is an increasing function with respect 

to  . Since  1 0v  , then ( ) 0v    for all  0,1  . 

If 
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 holds, then ( ) 0u   . This implies 0et t  is a monotonically 

decreasing function of variable  . Otherwise, ( ) 0u    and it implies that 0et t  is a monotonically 

increasing function of  . Intuitively, whilst both the elastic demand N and the random capacity ŝare 

both increasing with  , depending on the demand sensitivity b,  the amount of demand increase 

with   may be greater or lesser than that of capacity increase. Therefore, the length of peak period 

0et t  under elastic demand may also increase or decrease with respect to the value of  , depending 

of the demand sensitivity to cost. 

 

 

Appendix D: Proof of Theorem 2 

According to equations (10), (11), (12) and (13), the departure rate ( )r t  is continuous within each 

of intervals 0 1[ , )t t , 1 2( , )t t , 2 3( , )t t  and 3( , ]et t . From equations (11), (12) and (13), we have 
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Hence, ( )r t  is continuous within the interval 0[ , ]et t . 

Equations (10) and (12) state that the departure rate ( )r t  is constant during periods 0 1t t t   and 

2 3t t t  . Since departure rate ( )r t  is non-negative and   is positive, the denominator of the right 

hand side in (11) must be positive. Furthermore, since [0,1)   and 0    , then 

    0B s s      . By definition, the cumulative departure flow ( )R t  is non-decreasing 

with respect to time t , thus, the denominator of the right hand side of (11) is non-decreasing with 

respect to time t . Therefore, the right hand side of (11) is non-increasing with respect to time t , i.e., 

the departure rate ( )r t  is monotonically decreasing within 1 2[ , ]t t .  

Let ˆ( ) 1p s s   ˆln ln( ) s s . Substituting    ŝ s        into ( )p  , we obtain 

the first order derivative of ( )p   with respect to  , 

 
( )p

 
    

  
 

. 

It is clear that         , for 0 1  . Since   , we get ( ) 0p   . So, ( )p   is a 

monotonically decreasing function of the parameter  . Due to (1) 0p   and ( ) 0p    for all 

 0,1  , we then have 

ˆ ˆ
1 ln
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  . 

Multiplying both hand sides of the above equation by 0t t , we get 
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. 

Substituting the second inequality of equation (14), i.e.,  0( )R t s t t  , 3[ , ]et t t , into the above, 

we obtain 
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From the first inequality of equation (14), i.e.,  0ˆ ( )s t t R t  , 3[ , ]et t t , we have 
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Combining the above equation with the one before it leads to 
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which can be rewritten as 
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Note that the above equality employs the definition    ŝ s        and (13) for ( )r t . 

The first order derivative of (13) is  
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,   3[ , ]et t t . 

Thus, we can conclude d ( ) d 0r t t   for all 3( , ]et t t . 

In summary, the departure rate ( )r t  is monotonically decreasing within all four intervals and at 

their boundaries. Considering the continuity of ( )r t  for all 0[ , ]et t t , we conclude that ( )r t  is 

monotonically decreasing within 0[ , ]et t . This completes the proof.  ƶ 

 

 

Appendix E: Derivation of the time-varying toll  

There are three departure time intervals to be considered. In 0 1[ , ]t t , there is no schedule late, 

commuters departing at time t  must arrive at destination early and may experience queue, then the 

expected trip cost can be formulated as 
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The boundary condition for this situation is 1( ) 0SDE t  , 1 0 ˆt t s  ˆs s  when s s , we then 
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have 1 0( )R t t s  . 

In 1 2( , ]t t , commuters departing home and traversing the bottleneck for work will endure both 

schedule delay early and late. If the capacity of the bottleneck is large enough, only schedule delay 

early will occur. On the other hand, schedule delay late occurs when the capacity is very small. The 

watershed capacity satisfies  0 0ˆs s t t t   , therefore, the trip cost in the absence of toll can be 

reformulated as 

   
0

0

ˆ ˆ
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s t t t t t s t s
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. 

The boundary condition for this case is 2 2( ) ( ) 0SDE t SDL t   when ˆs s , we then have 

2 0ˆ( )R t t s  , which means 2 0t  . 

Commuters departing at time 2[ , ]et t  only experience schedule delay late. Thus, the mean trip 

cost without toll can be formulated as 

     
ˆ

0 0 0 ˆ

ˆ ˆ
[ ( )] ( )d ( ) d d

s s s

s s s

s s s
E c t t t f s s f s t t t s t s

s s 
 

            
    

     
 

0
0

ˆln ln

1

  
 



t t s s
t

  



. 

The boundary condition for this case is  0ˆ( )e eR t s t t  , i.e., the queuing length at time et  equals 

zero when ˆs s . 

Finally, by letting   0( )E C t t    and using (24), we can obtain the piecewise time-varying toll 

as represented in (27).  
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Appendix F: Derivation of the end time of tolling 

For ŝ  , according to the definitions made for [ ( , )]E c t   and [ ( , )]E c t  , we have  

[ ( , )] [ ( , )] [ ( , ) ]     E c t E T t E T t t      
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. Substituting (31) into the above two equations and 

equalizing them, we get 
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, 
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For ŝ  , similarly, we have 
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Appendix G: Single-step coarse toll when     

Lindsey et al. (2012) showed that in the deterministic model, if    and assuming the queue 

from the mass departure has not yet dissipated, a commupter who departs at dt  after the mass must 

experience the cost equal to the expected generalized cost of being in the mass, i.e., 

        2 2 2        d dt N s t t s t N s      . Similarly, in the stochastic model, we 

have 

         2 2d d
2




 
      

s sd

d s s

N s t t N
t f s s t f s s

s s 
      . 

Then,  

 
 

1
2 ln

2 1d

N
t t

s

  
 




  


. 

Since the single-step coarse toll does not affect the departure rate of commuters before the mass 

for either condition    and   , we have the same departure rates as shown in (32), (33), (34) 

and (35) with respect to the corresponding time intervals. In stochastic model, there are two possible 

situations for commuters who depart after the mass. We use dt  and st  to denote the watershed lines of 

departure times, 3N  and 4N  the number of commuters in these two situations, respectively. 

Situation I.  Users always arrive late in  ,d st t  . Similar to the no-toll equilibrium, the departure 

rate in this interval is 

 
1

1
( ) ,    

ln d s

s
r t t t t


   


   


. 

The boundary condition for this situation is  2 3 sN N s t t   , i.e. the queue length at time st  

equals zero when s s . 

Situation II.  Users always arrive late and may or may not incur a queuing delay in  ,s et t  . In this 

interval, the queue length may fall to zero and the departure rate becomes 



 

47 
 

 
 

 
 

   

0 1 0 1

0 0

( ) ( ) + ˆln ,   for [ , ],  if 

( )
( ) ( )ˆ ln ,   for [ , ],  otherwise

ˆ s e

s e

R t N N R t N N
t t t s

t t t t s
r t

R t R t
s t t t

t t t t s

s 




 

   
     

    
 

      

 

The boundary condition for this situation is ( ) 0er t  , i.e.,  2 3 4 ˆ+ eN N N s t t   . 

Using the boundary condition  3 2 sN N s t t    and the constant departure rate  r t  in time 

interval  ,d st t  , we can get 

 
 

2 d
s

N r t t st
t

s r t

 
 


. 

Finally, combining dt  and st  with (31), (36), (39), (40), (41) and substituting them into (44), and 

letting the first-order partial derivative of (44) with respect to t  be zero, we obtain  

 1t g N  , 
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Figure and Table captions: 

Figure 1   Equilibrium departures with stochastic capacity in a single bottleneck 

Figure 2   Mean trip cost and its components in no-toll equilibrium 

Figure 3   Influence of parameter value   on departure rate 

Figure 4   Equilibrium departure rate for different v  values 

Figure 5  Travel time distributions with departure timeunder no-toll (the upper concave profiles) and time-varying 

toll (the lower linear distributions). Figure 6   Time-varying toll for different   values 

Figure 7   Total travel cost for different   and N  values 

Figure 8   Difference between the earliest departure time with a single step coarse toll and that with no toll 

Figure 9   Cumulative departures with different parameters of single-step coarse toll in equilibrium 

Figure 10   Percentage reduction in travel cost (excluding toll) as a function of   

Figure 11   Relative efficiency from a coarse toll upon average capacity against that upon optimal capacity 

 

Table 1   Influence of parameter   on the mean trip cost and the watershed time instants 

Table 2   Influence of capacity variation v  on the mean trip cost and the watershed time instants 

Table 3   Individuals mean trip cost under three schemes 

Table 4   System total travel cost under three schemes and the efficiency of a coarse toll 

Table 5   System total toll revenue under two pricing schemes 

 


