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Abstract: Materials of a gradient structure have been shown to possess both high 

strength and high ductility. To date, materials of a gradient structure can only be 

produced in small quantities. In this paper, we report a novel ‘cyclic skin-pass rolling’ 

(CSPR) technique capable of producing sheets of gradient structure in large quantities. 

Both experimental and analytical/numerical investigations are reported. In the 

experiments on aluminium sheets, the outer layer was subjected to forty passes of 

CSPR with a reduction ratio 1% per pass. After CSPR, the sample surface shows an 

ultrafine-grained microstructure with a mean grain size of 206 nm, while the annealed 

microstructure is retained in the core of the sample. Compared with cold-rolled 

aluminium sheets fabricated with the same total reduction ratio, CSPR-processed 
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aluminium sheets have the same yield stress but improved uniform elongation (2.4 

times). Scanning electron microscopy was used to study the fracture surface, and 

transmission electron microscopy to examine the microstructure near the fracture end, 

in order to analyze the improvement in ductility. In addition, the finite element 

method was used to simulate the roll-sample contact pressure and strain distribution 

as well as residual stress on the sheet surface during CSPR, and to better understand 

the mechanism leading to improvement of ductility of the sheets by the CSPR 

technique.  

Keywords: gradient structure; aluminium sheet; ductility; finite element simulation; 

cyclic skin-pass rolling 

1. Introduction 

Nanograined/ultrafine-grained (NG/UFG) metals have higher strength compared to 

coarse-grained metals. This feature of NG/UFG metals has attracted much attention in 

recent years. Valiev [1] pointed out that NG/UFG metals fall in the category of 

‘advanced’ materials. Estrin and Vinogradov [2] reviewed the development of 

NG/UFG materials in the past 25 years. To manufacture NG/UFG metals, a number of 

severe plastic deformation methods have been developed. Saito et al. [3] developed an 

accumulative roll bonding (ARB) technique to fabricate UFG metal sheets. Lee et al. 

[4] used ARB on a six-layer stack to produce high strength UFG aluminium sheets. Yu 

et al. [5] used a four-layer ARB technique to manufacture UFG aluminium sheets at 

room temperature. These sheets were shown to have good bonding quality. High 
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pressure torsion is also an important severe plastic deformation method [6]. Joo et al. 

[7] studied the work-hardening-induced tensile ductility of high pressure torsion 

processed metallic glasses in bulk quantities. The equal channel angular press 

technique has also been widely used to fabricate NG/UFG materials [8]. Jafarlou et al. 

[9] studied the mechanical properties of AA6063 samples subjected to equal channel 

angular press. Asymmetric cryorolling is a technique which can be used to 

manufacture UFG metal sheets. Yu et al. [10] studied the grain refinement mechanism 

and mechanical properties of UFG aluminium alloy sheets fabricated using 

asymmetric cryorolling. In general, ductility and strength are contradictory properties 

in NG/UFG materials [11]. However, a number of potential applications demand the 

co-existence of ductility and strength in the material used. To enable greater 

applicability of NG/UFG bulk materials, it becomes necessary to attempt to improve 

their ductility, while also retaining their strength. Some heterogeneous microstructures 

with nanoscale to microscale grains have high strength and ductility [12, 13]. To 

facilitate this, a number of techniques such as formation of a gradient structure and 

formation of a bimodal structure have been discovered and developed as reviewed by 

Yu et al. [14].  

Gradient-structure microstructures, in which the grain size decreases from micron 

level in the core to nanoscale at the surface, are found to result in higher ductility and 

strength as well as the fatigue life validated by experiments and theoretical analysis 

[15-21]. Thevamaran et al. [22] reported that extreme gradient nanograined structures 

in silver microcubes resulted in high strength and high toughness. Fang et al. [23] 
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discovered the deformation mechanism of nanogradient Cu bars. Wu et al. [24] 

reported on the enhanced ductility in nanogradient interstitial-free steel bars. Yang et 

al. [25] used powder metallurgy to synthesize gradient-structure microstructures 

having enhanced toughness. However, to date, gradient-structure metals can only be 

fabricated in small quantities. A large-scale industrial application has not been 

reported due to a lack of reliable technologies capable of producing such materials in 

the form of sheets in large quantities. It would be desirable to produce such materials 

in sheet form in bulk quantities. 

In the metal industries, more than 20% metal products are required in sheet form. 

Thus, it is important to develop a method to produce sheets of gradient-structure metal 

in large quantities. Skin-pass rolling (SPR) with a rolling reduction ratio of less than 1% 

is usually used as the final operational step for producing cold-rolled metal sheets [26]. 

Kijima [27] analyzed the effect of lubrication on the roughness of SPR-processed 

sheets. Giarola et al. [28] found that SPR affects the mechanical properties of sheets 

such as prevention of Lüder bands. Mehdi et al. [29] found that SPR affects the 

texture of steel sheets. However, to date, there have been no reports on the 

manufacture of gradient-structure metal sheets using SPR, or a variant thereof. 

In this paper, we report for the first time a novel ‘cyclic skin-pass rolling’ (CSPR) 

method to enable fabrication of gradient-structure aluminium sheets. The sheets were 

processed by forty passes of CSPR with a reduction ratio of 1% per pass. It was found 

that the ductility of these sheets improved greatly compared to sheets produced by 

traditional cold rolling (CR) while maintaining the strength. We also report a finite 
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element simulation of the CSPR process, and propose a mechanism that leads to 

improvement in the ductility of the sheets manufactured by CSPR. 

2. Experimental Investigation 

Rolling experiments were carried out by using a 4-high multifunction rolling mill 

with 50 mm diameter work rolls made of the material Cr12 steel. The work rolls were 

newly polished before the experiment, resulting in a uniform deformation in the 

processed sheet along the rolling direction. The rolling was carried out under dry 

friction conditions at a speed of 40mm/s. The commercial aluminium alloy 1060 

(AA1060) was used as the test material. The nominal chemical composition (% mass) 

of the alloy is Al-99.6, Si-0.25, Zn-0.05, Cu-0.05, Mg-0.03 and Mn-0.03. The 

roughness of AA1060 sheets is about 0.37 µm [30]. The AA1060 sheets were 300 mm 

long and 60 mm wide. The thickness of the sheets before rolling was 1.5 mm, which 

was reduced to 1.1 mm by CSPR and also by traditional CR (single pass) separately. 

Thus, it was ensured that the aluminium sheets have the same total reduction ratio 

after both CSPR and CR. In this study, the main difference between CSPR and CR is 

the rolling reduction ratio per pass. Figure 1 shows a schematic diagram of the CSPR 

process. Before the rolling experiments, finite element simulation of the process was 

carried out to determine the effect of rolling reduction ratio on the strain distribution 

in sheets. The simulation results were used to determine an optimum reduction ratio 

per pass. During CSPR, the sheets were processed forty passes with the rolling 

reduction ratio per pass is equal to or less than 1%, and the error of rolling reduction 

ratio per pass is less than 5%.  
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Figure 1. Illustration of CSPR processing: rolling reduction ratio ≤1% per pass. The 

sheets were subjected to forty passes. 

After rolling, the sheets were machined into tensile test samples with 25 mm gauge 

length and 6 mm gauge width in accordance with the ASTM D412 standard, as shown 

in Figure 2a. Tensile tests on an INSTRON machine were carried out to measure the 

engineering stress vs. strain curves, using a strain rate of 1.0×10-3 s-1. The tensile tests 

were repeated three times. The scanning electron microscopy (SEM) technique was 

used to investigate the morphology of the fractured surface of the tensile tested 

samples. 

 

Figure 2. Tensile test sample, (a) geometrical size, (b) illustration of sample subjected 

to CSPR, (c) Meshing and boundaries in FE model. 

After CSPR and CR, the details of microstructure at the surface and in the core of 

the aluminium sheets were examined using a transmission electron microscope (TEM). 

After the tensile test, the details of microstructure near fracture tip were also inspected 

by TEM. The focused ion beam technique was used to manufacture TEM foil 

specimens from the rolled and tensile test samples, in which the TEM foil specimens 

were chosen from the top surface and the middle of the samples.  

In order to analyze the experimental results, finite element (FE) method was used to 

simulate the rolling processing and the tensile tests. In the FE models, the geometrical 
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parameters are the same with the experimental conditions. A two-dimensional FE 

model was developed on the LS-DYNA platform to study the strain distribution and 

residual stress in the sheet during rolling, using the model inputs as in the experiments. 

The Plastic-Kinematic material model was used for the aluminium sheet, for which 

the Young’s modulus was set as 80 GPa, the yield stress 60 MPa and the Poisson ratio 

0.3. The roll was assumed to be perfectly rigid because the elastic deformation of rolls 

during aluminium rolling can be neglected. The Coulomb friction model was 

employed and the friction coefficient between the roll and sheet was set as 0.25. 

Figure 3 shows an image of the computational mesh near the rolling deformation 

zone of SPR processing. The mesh near the sheet surface was much finer compared to 

that in the core of the sheet, making a total of 31951 nodes and 28200 elements in the 

model. In addition, three-dimensional FE simulations were also carried out to study 

the strain distribution in the samples during the tensile test, in which the Gurson 

damage model was used. The Gurson damage model is described in Eq. (1).  

Φ = 𝜎𝜎𝑒𝑒𝑒𝑒2

𝜎𝜎02
+ 2𝑞𝑞1𝑓𝑓∗ cosh �−𝑞𝑞2

3𝑝𝑝
2𝜎𝜎0
� − �1 + 𝑞𝑞12𝑓𝑓∗

2�     (1) 

where p the hydrostatic pressure, σeq the effective Von Mises stress, σ0 the yield stress 

of the matrix (function of the plastic deformation), q1, q2 are material parameters and 

f* is the effective porosity. In this study, q1, q2 and f* are 1.5, 1.0 and 0.06 

respectively [31]. The Young’s Modulus was set as 80 GPa, and the Poison’s ratio 0.3. 

For CR-processed sheets, according to the experimental results, the yield stress was 

set as 133 MPa. For CSPR-processed sheets, the yield stress of the UFG layer was set 

as 233 MPa, and 55 MPa for the coarse-grained layer. These values are considered the 
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grain size effect and calculated by the Hall-Petch equation according to the mean 

grain size as follows [20, 21]. For the three-dimensional tensile test simulation, there 

are 78554 nodes and 70200 elements. The FE model of tensile test was shown in Fig. 

2b and 2c. One side of sample was constrained. And the load was added in another 

side of sample according to the experimental parameters. 

 

Figure 3. Finite element meshing of sheet and roll near rolling deformation zone. 

3. Results 

3.1. Mechanical properties 

Figure 4 shows the engineering strain vs. engineering stress curves of the 

CSPR-processed and CR-processed and annealed sheets during the tensile test. Table 

1 lists the yield stress and uniform strain of the sheets subjected to CSPR and CR 

respectively. We can observe that the yield stress of CSPR-processed sheets (129 MPa) 

has similar value with that of sheets subjected to CR (133 MPa), which enhance 

greatly compared to the annealed sheets (55 MPa). However, in Table 1, the uniform 

strain of CR-processed aluminium sheets is 0.05, which increases to 0.12 for the 

CSPR-processed aluminium sheets, by a factor of 2.4. It is obvious that the 

CSPR-processed sheets have more desirable qualities such as enhanced ductility 

without sacrificing the yield strength, compared with sheets produced by CR. 
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Figure 4. Engineering stress-strain curves of CSPR-processed, CR-processed and 

annealed sheets.  

 

Table 1. Yield stress and uniform strain for the CSPR-processed and CR-processed 

samples. 

 

3.2. Microstructure of sheets after rolling 

Figure 5 shows TEM images of the samples after CR and CSPR processing. In 

Figure 5a1 and Figure 5a2, the microstructures at the sample surface are seen to be 

similar to those in the sample core after CR. The grain sizes for the CR-processed 

samples are in the range 0.6 µm to 1.8 µm. During CR, the plastic strain in sheets is 

uniform, which results in the same microstructure in the sheets. Figure 6 shows the 

grain size distribution by the statistics based on the size of 100 grains. Figure 6a and 

Figure 6b show the grain size distribution near the surface and in the core region of 

the aluminium sheets processed by CR. The mean grain size near the surface (998 nm) 

is only slightly smaller than that in the core (1004 nm). However, with the CSPR 

technique, a large difference between the grain size at the sample surface and in the 

sample core is seen, as shown in Figure 5b1 and Figure 5b2. Figure 6c shows the 

grain size distribution below the sample surface after subjected to CSPR, showing the 

majority of grains ranging from 160 nm to 320 nm, with a mean grain size of 206 nm. 

It is also seen that the annealed microstructure is retained in the core of sample. 
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Figure 6d shows the grain size distribution in the center of sample subjected to CSPR, 

in which the majority of grains is between 1600 nm and 2400 nm, with a mean grain 

size of 2001 nm. During CSPR, the plastic strain only appears near the surface of 

aluminium sheet, which results in much finer grain size near the sheet surface. It is 

obvious that the CR-processed samples have a relatively uniform microstructure and 

that the CSPR-processed samples have a gradient-structure microstructure. 

 

Figure 5. TEM images of rolled samples: (a1) surface and (a2) core of CR-processed 

samples respectively; (b1) surface and (b2) core of CSPR-processed samples 

respectively. 

 

Figure 6. Grain size distribution. (a) near surface of aluminium sheet by CR, (b) 

center of aluminium sheet by CR, (c) near surface of aluminium sheet by CSPR, and 

(d) center of aluminium sheet by CSPR. 

3.3. Fracture surface and geometrical shape of sheets after tensile tests 

Figure 7 shows SEM images of the fracture surfaces of the tensile-tested samples: 

Figure 7a1-7a3 for the samples processed by CR, and Figure 7b1-7b3 for those 

processed by CSPR. After necking, the thickness of necking zone is about 0.5 mm, 

indicating that Figure 7a1 and Figure 7b1 show more than half of the fracture surface 

(>0.3 mm). Figure 7a1 shows a serrated fracture surface for the samples subjected to 

CR. The geometric shape of fracture surface is the same with the results reported by 

Benzerga et al.[32], in which the fracture occurs in the sample center firstly. In 
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addition, the dimples near the sample core are smoother and shallower than those near 

the sample surface, as shown in Figure 7a2 and 7a3. Figure 7b1 shows a fully 

deformed fracture surface under shear, with deeper dimples near the sample core than 

near the sample surface for the samples subjected to CSPR. A detailed view of the 

dimples is shown in Figure 7b2 and 7b3. Compared fracture surfaces in Figure 7a2 

and Figure 7b2, they have similar dimple surfaces and dimple development regularity 

that the dimples are developed towards the sample surface, which means the fractures 

appear in the sample center firstly and then propagate to the sample surface. In Figure 

7a3 and Figure 7b3, there are many differences for the shape of dimples. For the 

samples subjected to CR, the dimples are small and shape, and the fracture surface are 

relative smooth. For the samples subjected to CSPR, the dimples are oval shape, and 

depth of most of the dimples is heavy. These observations suggest a mechanism for 

the observed improvement in the ductility of sheets produced by CSPR compared to 

those produced by CR. Figure 8 shows the geometric shapes of the fractured end of 

both CSPR-processed and CR-processed samples (also shown in Figure 4) for the 

cross section of the tensile direction and thickness direction. It is obvious that the 

CSPR-processed sample has greater deformation near the necking zone compared to 

that subjected to CR-processing, which implies a higher ductility of the 

CSPR-processed samples. 

 
Figure 7. Fracture surface of samples. (a1)-(a3) for cold rolling, (a2) for sample 

surface and (a3) for sample core; (b1)-(b3) for skin-pass rolling, (b2) for sample 

surface and (b3) for sample core. 
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Figure 8. Geometrical shape of fractured samples after tensile test.  

3.4. Microstructure near fracture end after tensile tests 

Figure 9a shows a TEM image of the microstructure near the fracture end of 

CR-processed samples from the cross section of the width direction and thickness 

direction (The TEM sample positions are shown in Figure 4). The fracture appears in 

the midst of a relatively uniform microstructure. Figure 9b shows a TEM image of 

the microstructure near the fracture end of the sample processed by CSPR. We can 

observe that the fracture first appears in the coarse-grained zone (core). In the 

gradient-structure micro-structure, the uniform nano-size grains in the sample surface 

can effectively inhibit crack initiation, as has also been reported by Zhao et al [33] 

and Huang et al [34]. Compared with the microstructure in the CR-processed 

aluminium sheets, the CSPR technique retains the original annealed microstructure in 

the core due to low plastic deformation. This may directly explain the great 

improvement in ductility of sheets fabricated by CSPR. 

 

 

Figure 9. TEM images of fracture end of sheets by (a) CR and (b) CSPR respectively. 

4. Discussion 

4.1. Deformation behavior of sheet during rolling 

During CR, the strain in the sheet is nearly uniform due to large reduction ratio. 
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However, the deformation only appears in the surface layer of the sheet during SPR. 

Figure 10 shows the roll-sample contact pressure distribution in the strip when the 

reduction ratio is in the range of 0.5% to 2.0%. When the rolling reduction is very 

small, the pressure is only concentrated near the sheet surface. In the figure, with 

increasing in rolling reduction ratio, the depth of the high-pressure region gradually 

increases.  

 

Figure 10. Pressure distribution in sheet during SPR with rolling reduction ratio (a) 

0.5%, (b) 1.0%, (c) 1.5% and (d) 2.0%. 

During deformation, grain refinement in the aluminium alloy is determined by the 

plastic strain. Figure 11a shows the plastic strain distribution in the sheet during SPR 

with a rolling reduction ratio of 0.5%. The plastic strain mainly appears near the sheet 

surface, and there is no deformation in the sheet core. Figure 11b shows the strain 

distribution across the sheet cross section for four reduction ratios. A 0.12 mm thick 

region near the sheet surface shows plastic deformation when the rolling reduction 

ratio is 0.5%. As the rolling reduction ratio increases to 1%, the thickness of plastic 

strain region grows to 0.17 mm. The thickness of plastic strain region further 

increases with higher rolling reduction ratio. For the rolling reduction ratio 1.5%, the 

thickness of plastic strain region grows to 0.25 mm. Plastic strain appears throughout 

the sheet cross section when the rolling reduction ratio increases to 2%. Figure 11c 

shows the ratio of plastic strain zone thickness to sheet thickness for different rolling 

reduction ratios. If the rolling reduction ratio is less than 1%, the ratio of the thickness 
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of plastic strain region to the thickness of sheet is around 20%. For a rolling reduction 

ratio of 2%, the ratio of the thickness of plastic strain region to the thickness of sheet 

increases to 100%. This indicates that the rolling reduction ratio per pass during 

CSPR is a crucial parameter that needs to be controlled in fabricating 

gradient--structure sheets. In this study, the rolling reduction ratio per pass during 

CSPR is less than 1%, thus the grain size near the sample surface is refined greatly 

compared to that in the center of sheet, as represented in Figure 5b1 and 5b2. In 

Figure 5b2, the annealed microstructure is kept in the sheet center which matches the 

simulation results quite well that there is no plastic strain in the center region.  

 

Figure 11. (a) strain distribution in sheet during skin pass rolling with rolling 

reduction ratio 0.5%; (b) strain distribution corresponding to different reduction 

ratios. 

4.2. Enhanced mechanical properties of CSPR-processed sheets 

In Figure 4, we observe that materials of a gradient structure show a similar yield 

stress but improved ductility compared to CR-processed samples. In this study, the 

total reduction ratio during CR equals to that during CSPR. The yield stress of the 

sheets may be related to the total strain. In the following paragraphs, we propose two 

mechanisms that may explain the improvement in the ductility of the sheets. 

The main feature of materials of a gradient structure is that the grain size 

distribution across sheets is non-uniform. There have been three kinds of structures 

with non-uniform grain size distribution reported to date. These have been shown to 
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have both high strength and high toughness. (1) The bimodal structure: The bimodal 

structure was first discovered in cryorolled and annealed copper sheets by Wang et al. 

[35]. Witkin et al. [36] found that the bimodal structure can achieve high strength and 

improved ductility of an Al–Mg alloy. Yu et al. [37] found that aluminium sheets 

subjected to ARB and subsequent asymmetric rolling develop a bimodal structure 

with high strength and high ductility. (2) The trimodal structure: Jiang et al. [38] first 

developed a trimodal composite material that combines the physical and mechanical 

properties of different phases. Zhang et al. [39] fabricated a trimodal structure 

composite using cryomilling of powders and high pressure torsion. They found that 

both strength and ductility of the composite improves during high pressure torsion. (3) 

The gradient structure: In this case, the outside (surface) is made up of nano-size 

grains, and inside is composed of coarse grains. Two mechanisms have been proposed 

to explain the improvement in strength and ductility: (i) grain coarsening and grain 

softening (nano grains) + grain refinement and grain hardening (coarse grains) [15], 

and (ii) strain hardening induced by a macroscopic strain gradient [16]. However, 

there are no reports that the outside is made of coarse-grains and the inside is made of 

nano-grains which also show high strength and high ductility. We propose that the 

deformation features during tensile test may contribute to the improvement of 

ductility of gradient--structure samples.  

Figure 12 shows the FE simulation results of the maximum plastic strain vs 

elongation in CR-processed and CSPR-processed samples subjected to tensile tests, in 

which the maximum plastic strain occurs in the center region of samples due to the 
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symmetrical shape and thick thickness during tensile tests. Benzerga et al. [32] 

reported the tensile test experimental results in which the cracks initiate and propagate 

from the sample center region. At beginning, the maximum strain in CR-processed 

sample is similar to that in CSPR-processed sample. However, with increasing the 

elongation, the maximum strain in CR-processed sample becomes larger than that of 

CSPR-processed sample for the same elongation. In addition, the necking begins in 

CR-processed sample when the elongation reaches 1.25 mm, which is much faster 

than that in CSPR-processed sample. From the strain distribution near necking regions, 

the strain in CR-processed sample is less uniform than that in CSPR-processed sample, 

which validates the difference of the geometric shape near necking region in Figure 7. 

Lyu et al [21] developed a physically-based multi-scale modeling framework to 

investigate materials with gradient structures which validated the achievable 

combination of high strength and high ductility. They pointed out materials with 

banded nano-structure can have higher ductility by delaying strain localization [21]. 

Lu et al [40] pointed out that the grain growth helps to smooth the inhomogeneous 

distribution of stress and strain which suppresses strain localization and plays an 

important role in enhanced ductility of gradient materials. The grain growth has been 

observed in rolled UFG materials [41]. Yuan et al. [42] also reported the ductility by 

shear band delocalization in the nano-layer of gradient structure. In Figure 12, it is 

obvious that the gradient structure can delay the strain localization, which contributes 

to the improved ductility.  
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Figure 12. Maximum plastic strain in CR-processed and CSPR-processed samples vs 

elongation during tensile test. 

In addition, the equivalent plastic strain in sample center is larger than that in 

sample surface during tensile test. Figure 13 shows the difference of the plastic strain 

between sample center and sample surface. The difference of the plastic strain 

between sample center and sample surface for CSPR-processed sample is larger than 

that for CR-processed sample before necking. In addition, the difference of the plastic 

strain increases greatly after necking for both CSPR-processed and CR-processed 

samples. If a crack appears in the core of sample, it will propagate rapidly. 

CR-processed sheets have a relatively uniform microstructure with refined grains. 

Generally, the finer the grain size, the lower is the ductility of the sheet for most of 

metals. In addition, the sheets may have some minor defects close to the inclusions 

due to plastic deformation in rolling processing [43], which will also reduce the 

ductility of the sheets. In Figure 6b, the cracks are seen to originate from the 

coarse-grain layer for the CSPR-processed sheets.  

 

Figure 13. Plastic strain difference between sample center and surface in 

CR-processed and CSPR-processed samples vs elongation during tensile test. 

 There are some studies in which it was seen that the residual stress distribution 

through sheet thickness also has effect on the mechanical properties of materials 

[17-19]. Dai and Shaw [19] reported that the residual compressive stresses near 

sample surface contributed to the improved fatigue resistance of nanograined samples. 
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Zhao et al. [33] found that the compression stress close to sheet surface contributes to 

the improved fatigue properties of a TC11 alloy after ultrasonic impacting and rolling 

treatment. Huang et al. [34] found that the compressive stress below the sample 

surface by pre-rolling with a small reduction results in higher damage tolerance of an 

Al-Cu-Mg alloy. In the current study, we also propose that the compressive stress near 

the sheet surface contributes to the improved ductility due to the suppression of crack 

opening near sample surface. Hattori et al. [44] pointed out that FE analysis is a useful 

tool to study the distribution of residual stress in rolled sheets. Figure 14 shows the 

residual stress in the rolling direction after rolling for different rolling reduction ratios. 

For aluminium sheets, when the reduction ratio is 0.5% and 1%, the residual stress in 

a large region near sheet surface is compressive, as shown in Figure 14a and Figure 

14b respectively. This kind of stress distribution is the same with the report on a 

C-2000 alloy after surface severe plastic deformation by Dai and Shaw [19]. Hattori et 

al. [44] also found that the residual stress in the rolling direction is compressive at the 

surface and tensile at about quarter thickness from the surface when the rolling 

reduction is low with small rolls and low friction coefficient. However, when the 

reduction ratio increases to 2%, the surface residual stress transforms into tensile 

stress, as shown in Figure 14c. Figure 14d shows that the residual stress below the 

sheet surface changes from compressive stress into tensile stress for higher rolling 

reduction ratios.  

 

Figure 14. Residual stress in sheet after a rolling pass for rolling reduction ratio (a) 
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0.5%, (b) 1.0%, (c) 2.0%. (d) residual stress cross the sheet thickness.  

Figure 15 shows the evolution of stress distribution and the evolution of stress 

cross the sheet thickness during tensile processing when the residual stresses in sheets 

after rolling (Figure 14) have been considered, in which the same load is set in FE 

models. Figure 15a1-Figure 15d1 show the evolution of stress distribution during 

tensile processing when the reduction ratio is set as 0.5%, and Figure 15a2-Figure 

15d2 for 2.0%. It is obvious that the evolution of stress distribution for the sheets with 

different residual stresses has great difference during tensile processing. During 

tensile processing, when the reduction ratio is set as 0.5% or 1.0%, the stress near the 

sheet center increases greatly, however, the stress near sheet surface increases slightly, 

as shown in Figure 15e and Figure 15f. When the reduction ratio is set as 1.5% or 

2.0%, although the stress near the sheet center increases with loading, however the 

value of stress near sheet center is much lower than that in the sheets with reduction 

ratio 0.5% and 1.0%. In addition, the stress near sheet surface increases continuously, 

as shown in Figure 15g and Figure 15h. For the step 3, the yield regions in Figure 15e 

and Figure 15f are close to zero mm, but the yield regions in Figure 15g and Figure 

15h are near 0.1mm. In addition, with the reduction ratio increases, the yield region 

increases at the same time step. It is obvious that the sheets which appear plastic 

deformation earlier will have lower ductility. Yang et al. [45] reported that the “back 

stress” in gradient structure materials subjected to surface mechanical attrition 

treatment contributes to the improved strength and ductility. Yang et al. [46] also 

reported that the “back stress” contributes to the improved ductility of a 
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medium-entropy alloy. Thus, the residual stress distribution in sheets with low 

reduction ratio may also contribute to the improvement in ductility of the 

gradient--structure aluminium sheets. 

 
Figure 15. Evolution of stress during tensile processing considered the residual stress 

after rolling, (a1)-(d1) for reduction ratio 0.5% and (a2)-(d2) for reduction ratio 2.0%. 

Stress value cross the sheet thickness during tensile processing considered the residual 

stress for rolling reduction ratio (e) 0.5%, (f) 1.0%, (g) 1.5% and (h) 2.0%. Here, step 

1, 2 and 3 are time step of 0.05 s in FE model. 

5. Conclusions 

(1) A novel ‘cyclic skin-pass rolling’ (CSPR) technique has been developed to 

fabricate gradient-structure metal sheets. Compared with the sheets manufactured by 

cold rolling, the CSPR-processed sheets show a comparable yield strength and 2.4 

times the uniform strain. The gradient structure and compression stress near sheet 

surface contribute to the higher ductility of the sheets. 

(2) The theory that the fracture originates in the sample core can be used to explain 

the improvement of ductility of sheets by skin-pass rolling technique compared to that 

by cold rolling. This was also observed in the TEM images of the microstructure near 

the fracture end of the tensile tested samples as well as in the SEM images of the 

fracture surface. 

(3) The rolling reduction ratio per pass during CSPR determines the mechanical 

properties of sheets. If the rolling reduction ratio is <1%, the ratio of the thickness of 

plastic strain region to the sheet thickness is <20%. 
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(4) FE simulation results show that the maximum plastic strain in CSPR-processed 

samples is lower than that in CR-processed samples with the same elongation during 

tensile test, in which the gradient structure can delay the strain localization. FE 

simulation results also show that the residual stress in sheets also have great effect on 

the plasticity deformation of sheets during tensile test. These two kinds of reasons can 

explain the higher ductility observed in CSPR-processed sheets. 
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Figure 1. Illustration of CSPR processing: rolling reduction ratio ≤1% per pass. The 

sheets were subjected to forty passes. 
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Figure 2. Schematic of tensile test sample. 
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Figure 3. Finite element meshing of sheet and roll near rolling deformation zone. 
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Figure 4. Engineering stress-strain curves of CSPR-processed, CR-processed and 

annealed sheets.  
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Figure 5. TEM images of rolled samples: (a1) surface and (a2) core of CR-processed 

samples respectively; (b1) surface and (b2) core of CSPR-processed samples 

respectively. 
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Figure 6. Grain size distribution. (a) near surface of aluminium sheet by CR, (b) 

center of aluminium sheet by CR, and (c) near surface of aluminium sheet by CSPR. 
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Figure 7. Fracture surface of samples. (a1)-(a3) for cold rolling, (a2) for sample 

surface and (a3) for sample core; (b1)-(b3) for skin-pass rolling, (b2) for sample 

surface and (b3) for sample core. 
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Figure 8. Geometrical shape of fractured samples after tensile test.  
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Figure 9. TEM images of fracture end of sheets by (a) CR and (b) CSPR respectively. 
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Figure 10. Pressure distribution in sheet during SPR with rolling reduction ratio (a) 

0.5%, (b) 1.0%, (c) 1.5% and (d) 2.0%. 
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Figure 11. (a) strain distribution in sheet during skin pass rolling with rolling 

reduction ratio 0.5%; (b) strain distribution corresponding to different reduction 

ratios. 
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Figure 12. Maximum plastic strain in CR-processed and CSPR-processed samples vs 

elongation during tensile test. 
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Figure 13. Plastic strain difference between sample center and surface in 

CR-processed and CSPR-processed samples vs elongation during tensile test. 
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Figure 14. Residual stress in sheet after a rolling pass for rolling reduction ratio (a) 

0.5%, (b) 1.0%, (c) 2.0%. (d) residual stress cross the sheet thickness.  
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Figure 15. Evolution of stress during tensile processing considered the residual stress 

after rolling, (a1)-(d1) for reduction ratio 0.5% and (a2)-(d2) for reduction ratio 2.0%. 

Stress value cross the sheet thickness during tensile processing considered the residual 

stress for rolling reduction ratio (e) 0.5%, (f) 1.0%, (g) 1.5% and (h) 2.0%. 
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