241 research outputs found

    Multiple transonic solutions and a new class of shock transitions in solar and stellar winds

    Get PDF
    The steady isothermal solar wind equations are shown to admit, under certain circumstances, mutliple transonic solutions when, for example, momentum deposition gives rise to multiplee critical points in the flow. These multiple solutions consist of a continuous solution and solutions which involve shock transitions between critical solutions. The ambiguity arising from the multiplicity of the solutions can be resolved by following the time evolution of a wind profile with one critical point. Results of the numerical integration of the time-dependent equations with momentum addition show that each of these multiple solutions is physically accessible and depends on the rate of change of momentum deposition. These results suggest that standing shocks are likely to be present in the inner solar wind flow

    Formation of standing shocks in stellar winds and related astrophysical flows

    Get PDF
    Stellar winds and other analogous astrophysical flows can be described, to lowest order, by the familiar one dimensional hydrodynamic equations which, being nonlinear, admit in some instances discontinuous as well as continuous transonic solutions for identical inner boundary conditions. The characteristics of the time dependent differential equations of motion are described to show how a perturbation changes profile in time and, under well defined conditions, develops into a stationary shock discontinuity. The formation of standing shocks in wind type astrophysical flows depends on the fulfillment of appropriate necessary conditions, which are determined by the conservation of mass, momentum and energy across the discontinuity, and certain sufficient conditions, which are determined by the flow's history

    Simultaneous observations of changes in coronal bright point emission at the 20 cm radio and He Lambda 10830 wavelengths

    Get PDF
    Preliminary results of observations of solar coronal bright points acquired simultaneously from ground based observatories at the radio wavelength of 20 cm and in the He I wavelength 10830 line on September 8, 1985, are reported. The impetus for obtaining simultaneous radio and optical data is to identify correlations, if any, in changes of the low transition-coronal signatures of bright points with the evolution of the magnetic field, and to distinguish between intermittent heating and changes in the magnetic field topology. Although simultaneous observations of H alpha emission and the photospheric magnetic field at Big Bear were also made, as well as radio observations from Owen Valley Radio Interferometer and Solar Maximum Mission (SSM) (O VIII line), only the comparison between He 10830 and the Very Large Array (VLA) radio data are presented

    A Study of the Structure of the Source Region of the Solar Wind in Support of a Solar Probe Mission

    Get PDF
    Despite the richness of the information about the physical properties and the structure of the solar wind provided by the Ulysses and SOHO observations, fundamental questions regarding the nature of the coronal heating mechanisms, their source, and the manifestations of the fast and slow solar wind, still remain unanswered. The last unexplored frontier to establish the connection between the structure and dynamics of the solar atmosphere, its extension into interplanetary space, and the mechanisms responsible for the evolution of the solar wind, is the corona between 1 and 30 R(sub s). A Solar Probe mission offers an unprecedented opportunity to explore this frontier. The uniqueness of this mission stems from its trajectory in a plane perpendicular to the ecliptic which reaches within 9 R(sub s), of the solar surface over the poles and 3 - 9 R(sub s), at the equator. With a complement of simultaneous in situ and remote sensing observations, this mission is destined to have a significant impact on our understanding of the fundamental processes that heat the corona and drive the solar wind. The Solar Probe should be able to detect remnants and signatures of the processes which heat the corona and accelerate the solar wind. The primary objective of this proposal was to explore the structure of the different source regions of the solar wind through complementary observational and theoretical studies in support of a Solar Probe mission

    Physics of the Inner Heliosphere 1-10 Rs: Plasma Diagnostics and Models

    Get PDF
    While the mechanisms responsible for the solar corona and the high-speed solar wind streams are still unknown, model computations offer means of predicting the properties of such mechanisms in light of the empirical constraints currently available. Modeling and data analysis efforts were aimed at understanding the plasma properties of the acceleration of the solar wind, its filamentary nature, and the conditions needed to account for a rapidly accelerating solar wind, reaching its terminal speed within 10 R(sub s). A sequence of models ranging from steady one-fluid descriptions of the solar wind to multi-fluid time-dependent models were developed. Plasma diagnostics evolved from the analysis of data acquired from Skylab to SOHO, and complemented by ground-based observations

    Explosive Events and the Evolution of the Photospheric Magnetic Field

    Full text link
    Transition region explosive events have long been suggested as direct signatures of magnetic reconnection in the solar atmosphere. In seeking further observational evidence to support this interpretation, we study the relation between explosive events and the evolution of the solar magnetic field as seen in line-of-sight photospheric magnetograms. We find that about 38% of events show changes of the magnetic structure in the photosphere at the location of an explosive event over a time period of 1 h. We also discuss potential ambiguities in the analysis of high sensitivity magnetograms

    Coronal plasma diagnostics from ground‐based observations

    Full text link
    In this paper we discuss the potential of ground‐based visible observations of the solar corona to address the key open problems in the physics of the solar atmosphere and of solar activity. We first compare the diagnostic potential of visible observations with those of high‐resolution spectrometers and narrowband imagers working in the EUV and X‐ray wavelength ranges. We then review the main diagnostic techniques (and introduce a few new ones) that can be applied to line and continuum emission in the solar atmosphere, and the physical problems that they enable us to address. Finally, we briefly review the main features of ground‐based coronographic instrumentation currently being developed and planned.Key PointsWe compare the characteristics of visible coronal observations with those in the EUV and X‐ray wavelength rangesWe review the magnetic field and plasma diagnostic techniques from coronal spectral lines in the visibleWe describe the future ground‐based coronographic instrumentation for coronal observations in the visible wavelength rangePeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134492/1/jgra52907_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134492/2/jgra52907.pd

    A new look at a polar crown cavity as observed by SDO/AIA

    Get PDF
    Context. The Solar Dynamics Observatory (SDO) was launched in February 2010 and is now providing an unprecedented view of the solar activity at high spatial resolution and high cadence covering a broad range of temperature layers of the atmosphere. Aims. We aim at defining the structure of a polar crown cavity and describing its evolution during the erupting process. Methods. We use the high-cadence time series of SDO/AIA observations at 304 Å (50 000 K) and 171 Å (0.6 MK) to determine the structure of the polar crown cavity and its associated plasma, as well as the evolution of the cavity during the different phases of the eruption. We report on the observations recorded on 13 June 2010 located on the north-west limb. Results. We observe coronal plasma shaped by magnetic field lines with a negative curvature (U-shape) sitting at the bottom of a cavity. The cavity is located just above the polar crown filament material. We thus observe the inner part of the cavity above the filament as depicted in the classical three part coronal mass ejection (CME) model composed of a filament, a cavity, and a CME front. The filament (in this case a polar crown filament) is part of the cavity, and it makes a continuous structuring from the filament to the CME front depicted by concentric ellipses (in a 2D cartoon). Conclusions. We propose to define a polar crown cavity as a density depletion sitting above denser polar crown filament plasma drained down the cavity by gravity. As part of the polar crown filament, plasma at different temperatures (ranging from 50 000 K to 0.6 MK) is observed at the same location on the cavity dips and sustained by a competition between the gravity and the curvature of magnetic field lines. The eruption of the polar crown cavity as a solid body can be decomposed into two phases: a slow rise at a speed of 0.6 km s-1 and an acceleration phase at a mean speed of 25 km s-1

    A survey on big data indexing strategies

    Get PDF
    The operations of the Internet have led to a significant growth and accumulation of data known as Big Data.Individuals and organizations that utilize this data, had no idea, nor were they prepared for this data explosion.Hence, the available solutions cannot meet the needs of the growing heterogeneous data in terms of processing. This results in inefficient information retrieval or search query results.The design of indexing strategies that can support this need is required. A survey on various indexing strategies and how they are utilized for solving Big Data management issues can serve as a guide for choosing the strategy best suited for a problem, and can also serve as a base for the design of more efficient indexing strategies.The aim of the study is to explore the characteristics of the indexing strategies used in Big Data manageability by covering some of the weaknesses and strengths of B-tree, R-tree, to name but a few. This paper covers some popular indexing strategies used for Big Data management. It exposes the potentials of each by carefully exploring their properties in ways that are related to problem solving
    corecore