1,737 research outputs found

    Non-Markovian dynamics of double quantum dot charge qubits due to acoustic phonons

    Full text link
    We investigate the dynamics of a double quantum dot charge qubit which is coupled to piezoelectric acoustic phonons, appropriate for GaAs heterostructures. At low temperatures, the phonon bath induces a non-Markovian dynamical behavior of the oscillations between the two charge states of the double quantum dot. Upon applying the numerically exact quasiadiabatic propagator path-integral scheme, the reduced density matrix of the charge qubit is calculated, thereby avoiding the Born-Markov approximation. This allows a systematic study of the dependence of the Q-factor on the lattice temperature, on the size of the quantum dots, as well as on the interdot coupling. We calculate the Q-factor for a recently realized experimental setup and find that it is two orders of magnitudes larger than the measured value, indicating that the decoherence due to phonons is a subordinate mechanism.Comment: 5 pages, 7 figures, replaced with the version to appear in Phys. Rev.

    Exact results for nonlinear ac-transport through a resonant level model

    Get PDF
    We obtain exact results for the transport through a resonant level model (noninteracting Anderson impurity model) for rectangular voltage bias as a function of time. We study both the transient behavior after switching on the tunneling at time t = 0 and the ensuing steady state behavior. Explicit expressions are obtained for the ac-current in the linear response regime and beyond for large voltage bias. Among other effects, we observe current ringing and PAT (photon assisted tunneling) oscillations.Comment: 7 page

    Quantum Transition State Theory for proton transfer reactions in enzymes

    Full text link
    We consider the role of quantum effects in the transfer of hyrogen-like species in enzyme-catalysed reactions. This study is stimulated by claims that the observed magnitude and temperature dependence of kinetic isotope effects imply that quantum tunneling below the energy barrier associated with the transition state significantly enhances the reaction rate in many enzymes. We use a path integral approach which provides a general framework to understand tunneling in a quantum system which interacts with an environment at non-zero temperature. Here the quantum system is the active site of the enzyme and the environment is the surrounding protein and water. Tunneling well below the barrier only occurs for temperatures less than a temperature T0T_0 which is determined by the curvature of potential energy surface near the top of the barrier. We argue that for most enzymes this temperature is less than room temperature. For physically reasonable parameters quantum transition state theory gives a quantitative description of the temperature dependence and magnitude of kinetic isotope effects for two classes of enzymes which have been claimed to exhibit signatures of quantum tunneling. The only quantum effects are those associated with the transition state, both reflection at the barrier top and tunneling just below the barrier. We establish that the friction due to the environment is weak and only slightly modifies the reaction rate. Furthermore, at room temperature and for typical energy barriers environmental degrees of freedom with frequencies much less than 1000 cm1^{-1} do not have a significant effect on quantum corrections to the reaction rate.Comment: Aspects of the article are discussed at condensedconcepts.blogspot.co

    Budget Processes: Theory and Experimental Evidence

    Get PDF
    This paper studies budget processes, both theoretically and experimentally. We compare the outcomes of bottom-up and top-down budget processes. It is often presumed that a top-down budget process leads to a smaller overall budget than a bottom-up budget process. Ferejohn and Krehbiel (1987) showed theoretically that this need not be the case. We test experimentally the theoretical predictions of their work. The evidence from these experiments lends strong support to their theory, both at the aggregate and the individual subject level

    Women and Illegal Activities: Gender Differences and Women's Willingness to Comply Over Time

    Get PDF
    In recent years the topics of illegal activities such as corruption or tax evasion have attracted a great deal of attention. However, there is still a lack of substantial empirical evidence about the determinants of compliance. The aim of this paper is to investigate empirically whether women are more willing to be compliant than men and whether we observe (among women and in general) differences in attitudes among similar age groups in different time periods (cohort effect) or changing attitudes of the same cohorts over time (age effect) using data from eight Western European countries from the World Values Survey and the European Values Survey that span the period from 1981 to 1999. The results reveal higher willingness to comply among women and an age rather than a cohort effect. Working Paper 06-5

    The UN in the lab

    Get PDF
    We consider two alternatives to inaction for governments combating terrorism, which we term Defense and Prevention. Defense consists of investing in resources that reduce the impact of an attack, and generates a negative externality to other governments, making their countries a more attractive objective for terrorists. In contrast, Prevention, which consists of investing in resources that reduce the ability of the terrorist organization to mount an attack, creates a positive externality by reducing the overall threat of terrorism for all. This interaction is captured using a simple 3×3 “Nested Prisoner’s Dilemma” game, with a single Nash equilibrium where both countries choose Defense. Due to the structure of this interaction, countries can benefit from coordination of policy choices, and international institutions (such as the UN) can be utilized to facilitate coordination by implementing agreements to share the burden of Prevention. We introduce an institution that implements a burden-sharing policy for Prevention, and investigate experimentally whether subjects coordinate on a cooperative strategy more frequently under different levels of cost sharing. In all treatments, burden sharing leaves the Prisoner’s Dilemma structure and Nash equilibrium of the game unchanged. We compare three levels of burden sharing to a baseline in a between-subjects design, and find that burden sharing generates a non-linear effect on the choice of the efficient Prevention strategy and overall performance. Only an institution supporting a high level of mandatory burden sharing generates a significant improvement in the use of the Prevention strategy

    Charge transport through single molecules, quantum dots, and quantum wires

    Full text link
    We review recent progresses in the theoretical description of correlation and quantum fluctuation phenomena in charge transport through single molecules, quantum dots, and quantum wires. A variety of physical phenomena is addressed, relating to co-tunneling, pair-tunneling, adiabatic quantum pumping, charge and spin fluctuations, and inhomogeneous Luttinger liquids. We review theoretical many-body methods to treat correlation effects, quantum fluctuations, nonequilibrium physics, and the time evolution into the stationary state of complex nanoelectronic systems.Comment: 48 pages, 14 figures, Topical Review for Nanotechnolog
    corecore