201 research outputs found
CD28 between tolerance and autoimmunity: The side effects of animal models [version 1; referees: 2 approved]
Regulation of immune responses is critical for ensuring pathogen clearance and for preventing reaction against self-antigens. Failure or breakdown of immunological tolerance results in autoimmunity. CD28 is an important co-stimulatory receptor expressed on T cells that, upon specific ligand binding, delivers signals essential for full T-cell activation and for the development and homeostasis of suppressive regulatory T cells. Many in vivo mouse models have been used for understanding the role of CD28 in the maintenance of immune homeostasis, thus leading to the development of CD28 signaling modulators that have been approved for the treatment of some autoimmune diseases. Despite all of this progress, a deeper understanding of the differences between the mouse and human receptor is required to allow a safe translation of pre-clinical studies in efficient therapies. In this review, we discuss the role of CD28 in tolerance and autoimmunity and the clinical efficacy of drugs that block or enhance CD28 signaling, by highlighting the success and failure of pre-clinical studies, when translated to humans
Regulatory T cells ameliorate intrauterine growth retardation in a transgenic rat model for preeclampsia
Preeclampsia is a multisystemic syndrome during pregnancy that is often associated with intrauterine growth retardation. Immunologic dysregulation, involving T cells, is implicated in the pathogenesis. The aim of this study was to evaluate the effect of upregulating regulatory T cells in an established transgenic rat model for preeclampsia. Application of superagonistic monoclonal antibody for CD28 has been shown to effectively upregulate regulatory T cells. In the first protocol (treatment protocol), we applied 1 mg of CD28 superagonist or control antibody on days 11 and 15 of pregnancy. In the second protocol (prevention protocol), the superagonist or control antibody was applied on days 1, 5, and 9. Superagonist increased regulatory T cells in circulation and placenta from 8.49+/-2.09% of CD4-positive T cells to 23.50+/-3.05% and from 3.85+/-1.45% to 23.27+/-7.64%, respectively. Blood pressure and albuminuria (30.6+/-15.1 versus 14.6+/-5.5 mg/d) were similar in the superagonist or control antibody-treated preeclamptic group for both protocols. Rats treated with CD28 superagonist showed increased pup weights in the prevention protocol (2.66+/-0.03 versus 2.37+/-0.05 g) and in the treatment protocol (3.04+/-0.04 versus 2.54+/-0.1 g). Intrauterine growth retardation, calculated by brain:liver weight ratio, was also decreased by the superagonist in both protocols. Further analysis of brain development revealed a 20% increase in brain volume by the superagonist. Induction of regulatory T cells in the circulation and the uteroplacental unit in an established preeclamptic rat model had no influence on maternal hypertension and proteinuria. However, it substantially improved fetal outcome by ameliorating intrauterine growth retardation
Theoretical Aspects of Charge Ordering in Molecular Conductors
Theoretical studies on charge ordering phenomena in quarter-filled molecular
(organic) conductors are reviewed. Extended Hubbard models including not only
the on-site but also the inter-site Coulomb repulsion are constructed in a
straightforward way from the crystal structures, which serve for individual
study on each material as well as for their systematic understandings. In
general the inter-site Coulomb interaction stabilizes Wigner crystal-type
charge ordered states, where the charge localizes in an arranged manner
avoiding each other, and can drive the system insulating. The variety in the
lattice structures, represented by anisotropic networks in not only the
electron hopping but also in the inter-site Coulomb repulsion, brings about
diverse problems in low-dimensional strongly correlated systems. Competitions
and/or co-existences between the charge ordered state and other states are
discussed, such as metal, superconductor, and the dimer-type Mott insulating
state which is another typical insulating state in molecular conductors.
Interplay with magnetism, e.g., antiferromagnetic state and spin gapped state
for example due to the spin-Peierls transition, is considered as well. Distinct
situations are pointed out: influences of the coupling to the lattice degree of
freedom and effects of geometrical frustration which exists in many molecular
crystals. Some related topics, such as charge order in transition metal oxides
and its role in new molecular conductors, are briefly remarked.Comment: 21 pages, 19 figures, to be published in J. Phys. Soc. Jpn. special
issue on "Organic Conductors"; figs. 4 and 11 replaced with smaller sized
fil
Rapid Regulatory T-Cell Response Prevents Cytokine Storm in CD28 Superagonist Treated Mice
Superagonistic CD28-specific monoclonal antibodies (CD28SA) are highly effective activators of regulatory T-cells (Treg cells) in rats, but a first-in-man trial of the human CD28SA TGN1412 resulted in an unexpected cytokine release syndrome. Using a novel mouse anti-mouse CD28SA, we re-investigate the relationship between Treg activation and systemic cytokine release. Treg activation by CD28SA was highly efficient but depended on paracrine IL-2 from CD28SA-stimulated conventional T-cells. Systemic cytokine levels were innocuous, but depletion of Treg cells prior to CD28SA stimulation led to systemic release of proinflammatory cytokines, indicating that in rodents, Treg cells effectively suppress the inflammatory response. Since the human volunteers of the TGN1412 study were not protected by this mechanism, we also tested whether corticosteroid prophylaxis would be compatible with CD28SA induced Treg activation. We show that neither the expansion nor the functional activation of Treg cells is affected by high-dose dexamethasone sufficient to control systemic cytokine release. Our findings warn that preclinical testing of activating biologicals in rodents may miss cytokine release syndromes due to the rapid and efficacious response of the rodent Treg compartment, and suggest that polyclonal Treg activation is feasible in the presence of antiphlogistic corticosteroid prophylaxis
Induction of c-onc expression in polyclonally activated mouse lymphocytes
No abstract availabl
- …