184 research outputs found

    Real-time Atomistic Observation of Structural Phase Transformations in Individual Hafnia Nanorods

    Get PDF
    High-temperature phases of hafnium dioxide have exceptionally high dielectric constants and large bandgaps, but quenching them to room temperature remains a challenge. Scaling the bulk form to nanocrystals, while successful in stabilizing the tetragonal phase of isomorphous ZrO2, has produced nanorods with a twinned version of the room temperature monoclinic phase in HfO2. Here we use in situ heating in a scanning transmission electron microscope to observe the transformation of an HfO2 nanorod from monoclinic to tetragonal, with a transformation temperature suppressed by over 1000°C from bulk. When the nanorod is annealed, we observe with atomic-scale resolution the transformation from twinned-monoclinic to tetragonal, starting at a twin boundary and propagating via coherent transformation dislocation; the nanorod is reduced to hafnium on cooling. Unlike the bulk displacive transition, nanoscale size-confinement enables us to manipulate the transformation mechanism, and we observe discrete nucleation events and sigmoidal nucleation and growth kinetics

    Real-time insight into the multistage mechanism of nanoparticle exsolution from a perovskite host surface

    Get PDF
    In exsolution, nanoparticles form by emerging from oxide hosts by application of redox driving forces, leading to transformative advances in stability, activity, and efficiency over deposition techniques, and resulting in a wide range of new opportunities for catalytic, energy and net-zero-related technologies. However, the mechanism of exsolved nanoparticle nucleation and perovskite structural evolution, has, to date, remained unclear. Herein, we shed light on this elusive process by following in real time Ir nanoparticle emergence from a SrTiO3 host oxide lattice, using in situ high-resolution electron microscopy in combination with computational simulations and machine learning analytics. We show that nucleation occurs via atom clustering, in tandem with host evolution, revealing the participation of surface defects and host lattice restructuring in trapping Ir atoms to initiate nanoparticle formation and growth. These insights provide a theoretical platform and practical recommendations to further the development of highly functional and broadly applicable exsolvable materials

    AhrC and Eep are biofilm infection-associated virulence factors in enterococcus faecalis

    Get PDF
    Enterococcus faecalis is part of the human intestinal microbiome and is a prominent cause of health care-associated infections. The pathogenesis of many E. faecalis infections, including endocarditis and catheter-associated urinary tract infection (CAUTI), is related to the ability of clinical isolates to form biofilms. To identify chromosomal genetic determinants responsible for E. faecalis biofilm-mediated infection, we used a rabbit model of endocarditis to test strains with transposon insertions or in-frame deletions in biofilm-associated loci: ahrC, argR, atlA, opuBC, pyrC, recN, and sepF. Only the ahrC mutant was significantly attenuated in endocarditis. We demonstrate that the transcriptional regulator AhrC and the protease Eep, which we showed previously to be an endocarditis virulence factor, are also required for full virulence in murine CAUTI. Therefore, AhrC and Eep can be classified as enterococcal biofilm-associated virulence factors. Loss of ahrC caused defects in early attachment and accumulation of biofilm biomass. Characterization of ahrC transcription revealed that the temporal expression of this locus observed in wild-type cells promotes initiation of early biofilm formation and the establishment of endocarditis. This is the first report of AhrC serving as a virulence factor in any bacterial species

    Two distinct populations of Bovine IL-17+ T-cells can be induced and WC1+IL-17+γδ T-cells are effective killers of protozoan parasites

    Get PDF
    IL-17 has emerged as a key player in the immune system, exhibiting roles in protection from infectious diseases and promoting inflammation in autoimmunity. Initially thought to be CD4 T-cell-derived, the sources of IL-17 are now known to be varied and belong to both the innate and adaptive arms of the immune system. Mechanisms for inducing IL-17 production in lymphoid cells are thought to rely on appropriate antigenic stimulation in the context of TGF-β1, IL-6 and/or IL-1β. Using culture protocols adapted from human studies, we have effectively induced both bovine CD4+ and WC1+ γδ T-cells to produce IL-17 termed Th17 and γδ17 cells, respectively. The negative regulatory effect of IFN-γ on mouse and human IL-17 production can be extended to the bovine model, as addition of IFN-γ decreases IL-17 production in both cell types. Furthermore we show that infection with the protozoan Neospora caninum will induce fibroblasts to secrete pro-IL-17 factors thereby inducing a γδ17 phenotype that preferentially kills infected target cells. Our study identifies two T-cell sources of IL-17, and is the first to demonstrate a protective effect of IL-17+ T-cells in ruminants. Our findings offer further opportunities for future adjuvants or vaccines which could benefit from inducing these responses

    Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal VO2 beams

    Full text link
    Spatial phase inhomogeneity at the nano- to microscale is widely observed in strongly-correlated electron materials. The underlying mechanism and possibility of artificially controlling the phase inhomogeneity are still open questions of critical importance for both the phase transition physics and device applications. Lattice strain has been shown to cause the coexistence of metallic and insulating phases in the Mott insulator VO2. By continuously tuning strain over a wide range in single-crystal VO2 micro- and nanobeams, here we demonstrate the nucleation and manipulation of one-dimensionally ordered metal-insulator domain arrays along the beams. Mott transition is achieved in these beams at room temperature by active control of strain. The ability to engineer phase inhomogeneity with strain lends insight into correlated electron materials in general, and opens opportunities for designing and controlling the phase inhomogeneity of correlated electron materials for micro- and nanoscale device applications.Comment: 14 pages, 4 figures, with supplementary informatio

    Assessing clinical communication skills in physicians: are the skills context specific or generalizable

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Communication skills are essential for physicians to practice Medicine. Evidence for the validity and domain specificity of communication skills in physicians is equivocal and requires further research. This research was conducted to adduce evidence for content and context specificity of communication skills and to assess the usefulness of a generic instrument for assessing communication skills in International Medical Graduates (IMGs).</p> <p>Methods</p> <p>A psychometric design was used for identifying the reliability and validity of the communication skills instruments used for high-stakes exams for IMG's. Data were collected from 39 IMGs (19 men – 48.7%; 20 women – 51.3%; Mean age = 41 years) assessed at 14 station OSCE and subsequently in supervised clinical practice with several instruments (patient surveys; ITERs; Mini-CEX).</p> <p>Results</p> <p>All the instruments had adequate reliability (Cronbach's alpha: .54 – .96). There were significant correlations (r range: 0.37 – 0.70, <it>p </it>< .05) of communication skills assessed by examiner with standardized patients, and of mini-CEX with patient surveys, and ITERs. The intra-item reliability across all cases for the 13 items was low (Cronbach's alpha: .20 – .56). The correlations of communication skills within method (e.g., OSCE or clinical practice) were significant but were non-significant between methods (e.g., OSCE and clinical practice).</p> <p>Conclusion</p> <p>The results provide evidence of context specificity of communication skills, as well as convergent and criterion-related validity of communication skills. Both in OSCEs and clinical practice, communication checklists need to be case specific, designed for content validity.</p

    Real-time insight into the multistage mechanism of nanoparticle exsolution from a perovskite host surface

    Get PDF
    In exsolution, nanoparticles form by emerging from oxide hosts by application of redox driving forces, leading to transformative advances in stability, activity, and efficiency over deposition techniques, and resulting in a wide range of new opportunities for catalytic, energy and net-zero-related technologies. However, the mechanism of exsolved nanoparticle nucleation and perovskite structural evolution, has, to date, remained unclear. Herein, we shed light on this elusive process by following in real time Ir nanoparticle emergence from a SrTiO3 host oxide lattice, using in situ high-resolution electron microscopy in combination with computational simulations and machine learning analytics. We show that nucleation occurs via atom clustering, in tandem with host evolution, revealing the participation of surface defects and host lattice restructuring in trapping Ir atoms to initiate nanoparticle formation and growth. These insights provide a theoretical platform and practical recommendations to further the development of highly functional and broadly applicable exsolvable materials

    Widening access to medicine may improve general practitioner recruitment in deprived and rural communities:survey of GP origins and current place of work

    Get PDF
    BACKGROUND: Widening access to medicine in the UK is a recalcitrant problem of increasing political importance, with associated strong social justice arguments but without clear evidence of impact on service delivery. Evidence from the United States suggests that widening access may enhance care to underserved communities. Additionally, rural origin has been demonstrated to be the factor most strongly associated with rural practice. However the evidence regarding socio-economic and rural background and subsequent practice locations in the UK has not been explored. The aim of this study was to investigate the association between general practitioners’ (GPs) socio-economic and rural background at application to medical school and demographic characteristics of their current practice. METHOD: The study design was a cross-sectional email survey of general practitioners practising in Scotland. Socio-economic status of GPs at application to medical school was assessed using the self-coded National Statistics Socio-Economic Classification. UK postcode at application was used to define urban–rural location. Current practice deprivation and remoteness was measured using NHS Scotland defined measures based on registered patients’ postcodes. RESULTS: A survey was sent to 2050 Scottish GPs with a valid accessible email address, with 801 (41.5 %) responding. GPs whose parents had semi-routine or routine occupations had 4.3 times the odds of working in a deprived practice compared to those with parents from managerial and professional occupations (95 % CI 1.8–10.2, p = 0.001). GPs from remote and rural Scottish backgrounds were more likely to work in remote Scottish practices, as were GPs originating from other UK countries. CONCLUSION: This study showed that childhood background is associated with the population GPs subsequently serve, implying that widening access may positively affect service delivery in addition to any social justice rationale. Longitudinal research is needed to explore this association and the impact of widening access on service delivery more broadly

    Prophage Spontaneous Activation Promotes DNA Release Enhancing Biofilm Formation in Streptococcus pneumoniae

    Get PDF
    Streptococcus pneumoniae (pneumococcus) is able to form biofilms in vivo and previous studies propose that pneumococcal biofilms play a relevant role both in colonization and infection. Additionally, pneumococci recovered from human infections are characterized by a high prevalence of lysogenic bacteriophages (phages) residing quiescently in their host chromosome. We investigated a possible link between lysogeny and biofilm formation. Considering that extracellular DNA (eDNA) is a key factor in the biofilm matrix, we reasoned that prophage spontaneous activation with the consequent bacterial host lysis could provide a source of eDNA, enhancing pneumococcal biofilm development. Monitoring biofilm growth of lysogenic and non-lysogenic pneumococcal strains indicated that phage-infected bacteria are more proficient at forming biofilms, that is their biofilms are characterized by a higher biomass and cell viability. The presence of phage particles throughout the lysogenic strains biofilm development implicated prophage spontaneous induction in this effect. Analysis of lysogens deficient for phage lysin and the bacterial major autolysin revealed that the absence of either lytic activity impaired biofilm development and the addition of DNA restored the ability of mutant strains to form robust biofilms. These findings establish that limited phage-mediated host lysis of a fraction of the bacterial population, due to spontaneous phage induction, constitutes an important source of eDNA for the S. pneumoniae biofilm matrix and that this localized release of eDNA favors biofilm formation by the remaining bacterial population

    IL-17RA Signaling Reduces Inflammation and Mortality during Trypanosoma cruzi Infection by Recruiting Suppressive IL-10-Producing Neutrophils

    Get PDF
    Members of the IL-17 cytokine family play an important role in protection against pathogens through the induction of different effector mechanisms. We determined that IL-17A, IL-17E and IL-17F are produced during the acute phase of T. cruzi infection. Using IL-17RA knockout (KO) mice, we demonstrate that IL-17RA, the common receptor subunit for many IL-17 family members, is required for host resistance during T. cruzi infection. Furthermore, infected IL-17RA KO mice that lack of response to several IL-17 cytokines showed amplified inflammatory responses with exuberant IFN-γ and TNF production that promoted hepatic damage and mortality. Absence of IL-17RA during T. cruzi infection resulted in reduced CXCL1 and CXCL2 expression in spleen and liver and limited neutrophil recruitment. T. cruzi-stimulated neutrophils secreted IL-10 and showed an IL-10-dependent suppressive phenotype in vitro inhibiting T-cell proliferation and IFN-γ production. Specific depletion of Ly-6G+ neutrophils in vivo during T. cruzi infection raised parasitemia and serum IFN-γ concentration and resulted in increased liver pathology in WT mice and overwhelming wasting disease in IL-17RA KO mice. Adoptively transferred neutrophils were unable to migrate to tissues and to restore resistant phenotype in infected IL-17RA KO mice but migrated to spleen and liver of infected WT mice and downregulated IFN-γ production and increased survival in an IL-10 dependent manner. Our results underscore the role of IL-17RA in the modulation of IFN-γ-mediated inflammatory responses during infections and uncover a previously unrecognized regulatory mechanism that involves the IL-17RA-mediated recruitment of suppressive IL-10-producing neutrophils
    • …
    corecore