2,110 research outputs found

    Aging-dependent functional alterations of mitochondrial DNA (mtDNA) from human fibroblasts transferred into mtDNA-less cells

    Get PDF
    To investigate the role that aging-dependent accumulation of mitochondrial DNA (mtDNA) mutations plays in the senescence processes, mitochondria from fibroblasts of 21 normal human individuals between 20 weeks (fetal) and 103 years of age were introduced into human mtDNA-less (ρ0) 206 cells by cytoplast × ρ0 cell fusion, and 7-31 transformant clones were isolated from each fusion. A slight cell donor age-dependent decrease in growth rate was detected in the transformants. Using an O2 consumption rate of 1 fmol/min/cell, which was not observed in any transformant among 158 derived from individuals 20 weeks (fetal) to 37 years of age, as a cut-off to identify respiratory-deficient clones, 11 such clones were found among 198 transformants derived from individuals 39-103 years of age. Furthermore, conventional and nonparametric analysis of the respiratory rates of 356 clones revealed a very significant decrease with donor age. In other analyses, a very significant age-dependent decline in the mtDNA content of the clones was observed, without, however, any significant correlation with the decrease in O2 consumption rate in the defective transformants. These observations clearly indicate the occurrence in the fibroblast-derived transformants of two independent, age-related functional alterations of mtDNA, presumably resulting from structural damage to this genome

    Noncommutative Einstein Equations

    Full text link
    We study a noncommutative deformation of general relativity where the gravitational field is described by a matrix-valued symmetric two-tensor field. The equations of motion are derived in the framework of this new theory by varying a diffeomorphisms and gauge invariant action constructed by using a matrix-valued scalar curvature. Interestingly the genuine noncommutative part of the dynamical equations is described only in terms of a particular tensor density that vanishes identically in the commutative limit. A noncommutative generalization of the energy-momentum tensor for the matter field is studied as well.Comment: 17 Pages, LaTeX, reference adde

    Dispersion of passive tracers in model flows: effects of the parametrization of small-scale processes

    Get PDF
    Abstract. A set of numerical experiments is presented, in which we study the dynamics of passive particles advected by given two-dimensional velocity fields and perturbed by a non-white noise with a characteristic time τ. Data and model results have shown that this kind of random perturbation is able to represent subgridscale processes for upper ocean mesoscale turbulence for regions of the world ocean where turbulence can be assumed to be homogeneous. Extensive computations in different fields characterized by cell-like structure, both stationary and time-dependent, representing very idealized geophysical flow situations, show that the presence of a finite correlation time scale does lead to enhanced or arrested dispersion, depending on the considered flow; however, it does not seem to affect the gross qualitative behaviour of the dispersion processes, which is primarily affected by the large-scale velocity field

    Non-Perturbative One-Loop Effective Action for Electrodynamics in Curved Spacetime

    Full text link
    In this paper we explicitly evaluate the one-loop effective action in four dimensions for scalar and spinor fields under the influence of a strong, covariantly constant, magnetic field in curved spacetime. In the framework of zeta function regularization, we find the one-loop effective action to all orders in the magnetic field up to linear terms in the Riemannian curvature. As a particular case, we also obtain the one-loop effective action for massless scalar and spinor fields. In this setting, we found that the vacuum energy of charged spinors with small mass becomes very large due entirely by the gravitational correction.Comment: LaTeX, 23 page

    Edmunds.com v. Humankind Design

    Get PDF
    JEL classification: C32, C5

    Upstream actuation for bluff-body wake control driven by a genetically inspired optimization

    Get PDF
    The control of bluff-body wakes for reduced drag and enhanced stability has traditionally relied on the so-called direct-wake control approach. By the use of actuators or passive devices, one can manipulate the aerodynamic loads that act on the rear of the model. An alternative approach for the manipulation of the flow is to move the position of the actuator upstream, hence interacting with an easier-to-manipulate boundary layer. The present paper comprises a bluff-body flow study via large-eddy simulations to investigate the effectiveness of an upstream actuator (positioned at the leading edge) with regard to the manipulation of the wake dynamics and its aerodynamic loads. A rectangular cylinder with rounded leading edges, equipped with actuators positioned at the front curvatures, is simulated at. A genetic algorithm (GA) optimization is performed to find an effective actuation that minimizes drag. It is shown that the GA selects superharmonic frequencies of the natural vortex shedding. Hence, the induced disturbances, penetrating downstream in the wake, significantly reduce drag and lateral instability. A comparison with a side-recirculation-suppression approach is also presented, the latter case being worse in terms of reduced drag (only 8 % drag reduction achieved), despite the total suppression of the side recirculation bubble. In contrast, the GA optimized case contributes to a 20 % drag reduction with respect to the unactuated case. In addition, the large drag reduction is associated with a reduced shedding motion and an improved lateral stability

    Comparative transcriptomic analysis of plum fruit treated with 1-MCP

    Get PDF
    Microarray technology has allowed the large scale transcriptomic analysis of fruit ripening. The μPEACH1.0 microarray containing 4,806 probes corresponding to genes expressed in peach fruit tissues has been used in a heterologous fashion in two studies of plums ripening behavior. Gene expression of different cultivars of plums treated with the ethylene antagonist, 1-methylcyclopropene (1-MCP) and stored for short periods at room temperature or for longer periods of cold storage was examined. In the first study, mature fruit of a suppressed ethylene climacteric cultivar 'Shiro' and a cultivar characterized by a typical increase of ethylene production during ripening ('Santa Rosa') were harvested and incubated for 24h in air (control) or 1-MCP and allowed to ripen at room temperature. Different levels of transcripts of genes implicated in cell wall metabolism, hormone (ethylene and auxin) regulation, stress and defense, and in the transcription/translation machinery, as well as others involved with ripening were identified. In the second study, the effects of 1-MCP on gene expression in relation to the development of chilling injury (CI) in the climacteric cultivars 'Ruby Red' (RR) and 'October Sun' (OS) and 'Zee Lady' peaches (ZP) were analyzed. The fruit were treated for 24h at room temperature with 1-MCP prior to storage at 0°C. For RR, there was no significant effect of 1-MCP on the level of CI symptoms, while 1-MCP significantly reduced CI symptoms in OS fruit and an increase of CI in treated ZP fruit. Microarray analysis showed that immediately following treatment, 186, 134 and 56 genes were differentially expressed between the control and 1-MCP-treated fruit of these cultivars, respectively: after 4 weeks cold storage, 311, 52 and 224 genes for RR, OS and ZP, respectively, were differentially expressed between control and treated fruit. Thus, for OS, the number of differentially expressed genes reduced during storage while the number increased in RR and ZP. Comparisons of the data suggest that the transcript profile is altered by 1-MCP more in plums than peaches. These studies, carried out within an international collaborative network, will increase our understanding of the regulation of pathways involved in plum fruit ripening and in metabolic processes related to storage and shelf lif
    corecore