85 research outputs found

    AMS measurements of cosmogenic and supernova-ejected radionuclides in deep-sea sediment cores

    Full text link
    Samples of two deep-sea sediment cores from the Indian Ocean are analyzed with accelerator mass spectrometry (AMS) to search for traces of recent supernova activity around 2 Myr ago. Here, long-lived radionuclides, which are synthesized in massive stars and ejected in supernova explosions, namely 26Al, 53Mn and 60Fe, are extracted from the sediment samples. The cosmogenic isotope 10Be, which is mainly produced in the Earths atmosphere, is analyzed for dating purposes of the marine sediment cores. The first AMS measurement results for 10Be and 26Al are presented, which represent for the first time a detailed study in the time period of 1.7-3.1 Myr with high time resolution. Our first results do not support a significant extraterrestrial signal of 26Al above terrestrial background. However, there is evidence that, like 10Be, 26Al might be a valuable isotope for dating of deep-sea sediment cores for the past few million years.Comment: 5 pages, 2 figures, Proceedings of the Heavy Ion Accelerator Symposium on Fundamental and Applied Science, 2013, will be published by the EPJ Web of conference

    Influence of tunneling on electron screening in low energy nuclear reactions in laboratories

    Get PDF
    Using a semiclassical mean field theory, we show that the screening potential exhibits a characteristic radial variation in the tunneling region in sharp contrast to the assumption of the constant shift in all previous works. Also, we show that the explicit treatment of the tunneling region gives a larger screening energy than that in the conventional approach, which studies the time evolution only in the classical region and estimates the screening energy from the screening potential at the external classical turning point. This modification becomes important if the electronic state is not a single adiabatic state at the external turning point either by pre-tunneling transitions of the electronic state or by the symmetry of the system even if there is no essential change with the electronic state in the tunneling region.Comment: 3 figure

    Limits on Supernova-Associated Fe 60/Al 26 Nucleosynthesis Ratios from Accelerator Mass Spectrometry Measurements of Deep-Sea Sediments

    Get PDF
    We searched for the presence of Al26 in deep-sea sediments as a signature of supernova influx. Our data show an exponential dependence of Al26 with the sample age that is fully compatible with radioactive decay of terrigenic Al26. The same set of samples demonstrated a clear supernova Fe60 signal between 1.7 and 3.2 Myr ago. Combining our Al26 data with the recently reported Fe60 data results in a lower limit of 0.18-0.08+0.15 for the local interstellar Fe60/Al26 isotope ratio. It compares to most of the ratios deduced from nucleosynthesis models and is within the range of the observed average galactic Fe60/Al26 flux ratio of (0.15±0.05).This work was funded in part by the Austrian Science Fund (FWF), Projects No. P20434 and No. I428 (EUROCORES project EuroGENESIS, subproject CoDustMas), by BMBF Project No. 05K2016, DAAD (56266169), and by the University of Vienna

    Determination of the stellar (n,gamma) cross section of 40Ca with accelerator mass spectrometry

    Full text link
    The stellar (n,gamma) cross section of 40Ca at kT=25 keV has been measured with a combination of the activation technique and accelerator mass spectrometry (AMS). This combination is required when direct off-line counting of the produced activity is compromised by the long half-life and/or missing gamma-ray transitions. The neutron activations were performed at the Karlsruhe Van de Graaff accelerator using the quasistellar neutron spectrum of kT=25 keV produced by the 7Li(p,n)7Be reaction. The subsequent AMS measurements were carried out at the Vienna Environmental Research Accelerator (VERA) with a 3 MV tandem accelerator. The doubly magic 40Ca is a bottle-neck isotope in incomplete silicon burning, and its neutron capture cross section determines the amount of leakage, thus impacting on the eventual production of iron group elements. Because of its high abundance, 40Ca can also play a secondary role as "neutron poison" for the s-process. Previous determinations of this value at stellar energies were based on time-of-flight measurements. Our method uses an independent approach, and yields for the Maxwellian-averaged cross section at kT=30 keV a value of 30 keV= 5.73+/-0.34 mb.Comment: 8 pages, 3 figure

    Cesium, iodine and tritium in NW Pacific waters - a comparison of the Fukushima impact with global fallout

    Get PDF
    Radionuclide impact of the Fukushima Dai-ichi nuclear power plant accident on the distribution of radionuclides in seawater of the NW Pacific Ocean is compared with global fallout from atmospheric tests of nuclear weapons. Surface and water column samples collected during the <i>Ka'imikai-o-Kanaloa</i> (<i>KOK</i>) international expedition carried out in June 2011 were analyzed for <sup>134</sup>Cs, <sup>137</sup>Cs, <sup>129</sup>I and <sup>3</sup>H. The <sup>137</sup>Cs, <sup>129</sup>I and <sup>3</sup>H levels in surface seawater offshore Fukushima varied between 0.002–3.5 Bq L<sup>−1</sup>, 0.01–0.8 μBq L<sup>−1</sup>, and 0.05–0.15 Bq L<sup>−1</sup>, respectively. At the sampling site about 40 km from the coast, where all three radionuclides were analyzed, the Fukushima impact on the levels of these three radionuclides represents an increase above the global fallout background by factors of about 1000, 50 and 3, respectively. The water column data indicate that the transport of Fukushima-derived radionuclides downward to the depth of 300 m has already occurred. The observed <sup>137</sup>Cs levels in surface waters and in the water column are compared with predictions obtained from the ocean general circulation model, which indicates that the Kuroshio Current acts as a southern boundary for the transport of the radionuclides, which have been transported from the Fukushima coast eastward in the NW Pacific Ocean. The <sup>137</sup>Cs inventory in the water column is estimated to be about 2.2 PBq, what can be regarded as a lower limit of the direct liquid discharges into the sea as the seawater sampling was carried out only in the area from 34 to 37° N, and from 142 to 147° E. About 4.6 GBq of <sup>129</sup>I was deposited in the NW Pacific Ocean, and 2.4–7 GBq of <sup>129</sup>I was directly discharged as liquid wastes into the sea offshore Fukushima. The total amount of <sup>3</sup>H released and deposited over the NW Pacific Ocean was estimated to be 0.1–0.5 PBq. These estimations depend, however, on the evaluation of the total <sup>137</sup>Cs activities released as liquid wastes directly into the sea, which should improve when more data are available. Due to a suitable residence time in the ocean, Fukushima-derived radionuclides will provide useful tracers for isotope oceanography studies on the transport of water masses during the next decades in the NW Pacific Ocean

    The Cross Section of 3He(3He,2p)4He measured at Solar Energies

    Get PDF
    We report on the results of the \hethet\ experiment at the underground accelerator facility LUNA (Gran Sasso). For the first time the lowest projectile energies utilized for the cross section measurement correspond to energies below the center of the solar Gamow peak (E0E_{\rm 0}=22 keV). The data provide no evidence for the existence of a hypothetical resonance in the energy range investigated. Although no extrapolation is needed anymore (except for energies at the low-energy tail of the Gamow peak), the data must be corrected for the effects of electron screening, clearly observed the first time for the \hethet\ reaction. The effects are however larger than expected and not understood, leading presently to the largest uncertainty on the quoted Sb(E0)S_{\rm b}(E_{\rm 0}) value for bare nuclides (=5.40 MeV b).Comment: 18 pages, 10 postscript figures, Calculations concerning hypothetical resonanz added, Submitted to Phys. Rev. C., available at this URL: HTTP://www.lngs.infn.it/lngs/htexts/luna/luna.htm

    Association of the 894G>T polymorphism in the endothelial nitric oxide synthase gene with risk of acute myocardial infarction

    Get PDF
    Background: This study was designed to investigate the association of the 894G>T polymorphism in the eNOS gene with risk of acute myocardial infarction (AMI), extent of coronary artery disease (CAD) on coronary angiography, and in-hospital mortality after AMI. Methods: We studied 1602 consecutive patients who were enrolled in the GEMIG study. The control group was comprised by 727 individuals, who were randomly selected from the general adult population. Results: The prevalence of the Asp298 variant of eNOS was not found to be significantly and independently associated with risk of AMI (RR = 1.08, 95%CI = 0.77–1.51, P = 0.663), extent of CAD on angiography (OR = 1.18, 95%CI = 0.63–2.23, P = 0.605) and in-hospital mortality (RR = 1.08, 95%CI = 0.29–4.04, P = 0.908). Conclusion: In contrast to previous reports, homozygosity for the Asp298 variant of the 894G>T polymorphism in the eNOS gene was not found to be associated with risk of AMI, extent of CAD and in-hospital mortality after AM

    Measurement of the strong interaction induced shift and width of the 1s state of kaonic deuterium at J-PARC

    Get PDF
    The antikaon-nucleon interaction close to threshold provides crucial information on the interplay between spontaneous and explicit chiral symmetry breaking in low-energy QCD. In this context the importance of kaonic deuterium X-ray spectroscopy has been well recognized, but no experimental results have yet been obtained due to the difficulty of the measurement. We propose to measure the shift and width of the kaonic deuterium 1s state with an accuracy of 60 eV and 140 eV respectively at J-PARC. These results together with the kaonic hydrogen data (KpX at KEK, DEAR and SIDDHARTA at DAFNE) will then permit the determination of values of both the isospin I=0 and I=1 antikaon-nucleon scattering lengths and will provide the most stringent constraints on the antikaon-nucleon interaction, promising a breakthrough. Refined Monte Carlo studies were performed, including the investigation of background suppression factors for the described setup. These studies have demonstrated the feasibility of determining the shift and width of the kaonic deuterium atom 1s state with the desired accuracy of 60 eV and 140 eV.Comment: 12 pages, 9 figure
    corecore