1,731 research outputs found

    Natural linewidth analysis of d-band photoemission from Ag(110)

    Full text link
    We report a high-resolution angle-resolved study of photoemission linewidths observed for Ag(110). A careful data analysis yields k−resolvedupperlimitsfortheinverseinelasticlifetimesof-resolved upper limits for the inverse inelastic lifetimes of d−holesattheX−pointofthebulkbandstructure.Attheupper-holes at the X-point of the bulk band structure. At the upper d−bandedgethehole−lifetimeis-band edge the hole-lifetime is \tau_h \geq 22 fs,i.e.morethanoneorderofmagnitudelargerthanpredictedforafree−electrongas.Followingcalculationsforfs, i.e. more than one order of magnitude larger than predicted for a free-electron gas. Following calculations for d$-hole dynamics in Cu (I.\ Campillo et al., Phys. Rev. Lett., in press) we interpret the lifetime enhancement by a small scattering cross-section of dd- and spsp-states below the Fermi level. With increasing distance to EFE_F the dd-hole lifetimes get shorter because of the rapidly increasing density of d-states and contributions of intra-dd-band scattering processes, but remain clearly above free-electron-model predictions.Comment: 14 pages, 7 figure

    Interactions of lipid monolayers with the natural biopolymer hyaluronic acid

    Get PDF
    AbstractThe interaction of the natural mucopolysaccharide hyaluronic acid with different lipids, present in the natural membranes, was studied at the lipid/water interface using thermodynamic methods and X-ray diffraction. The results show that this biopolymer modifies the properties and the structure of the lipid monolayer. The two-dimensional crystalline lattice and domain structure of the charged octadecylamine monolayer are strongly disturbed by the hyaluronic acid, the monolayer compressibility increases and the monolayer collapse pressure drops down. In addition, the presence of charged lipid interfaces influences the structural organisation of the hyaluronic acid at the membrane/water interfaces. The impacts of these results on the structural organisation at the membrane interface are discussed

    Electron mean free path from angle-dependent photoelectron spectroscopy of aerosol particles

    Full text link
    We propose angle-resolved photoelectron spectroscopy of aerosol particles as an alternative way to determine the electron mean free path of low energy electrons in solid and liquid materials. The mean free path is obtained from fits of simulated photoemission images to experimental ones over a broad range of different aerosol particle sizes. The principal advantage of the aerosol approach is twofold. Firstly, aerosol photoemission studies can be performed for many different materials, including liquids. Secondly, the size-dependent anisotropy of the photoelectrons can be exploited in addition to size-dependent changes in their kinetic energy. These finite size effects depend in different ways on the mean free path and thus provide more information on the mean free path than corresponding liquid jet, thin film, or bulk data. The present contribution is a proof of principle employing a simple model for the photoemission of electrons and preliminary experimental data for potassium chloride aerosol particles

    Regulatory cross-cutting topics for fuel cycle facilities.

    Get PDF
    This report overviews crosscutting regulatory topics for nuclear fuel cycle facilities for use in the Fuel Cycle Research&Development Nuclear Fuel Cycle Evaluation and Screening study. In particular, the regulatory infrastructure and analysis capability is assessed for the following topical areas:Fire Regulations (i.e., how applicable are current Nuclear Regulatory Commission (NRC) and/or International Atomic Energy Agency (IAEA) fire regulations to advance fuel cycle facilities)Consequence Assessment (i.e., how applicable are current radionuclide transportation tools to support risk-informed regulations and Level 2 and/or 3 PRA) While not addressed in detail, the following regulatory topic is also discussed:Integrated Security, Safeguard and Safety Requirement (i.e., how applicable are current Nuclear Regulatory Commission (NRC) regulations to future fuel cycle facilities which will likely be required to balance the sometimes conflicting Material Accountability, Security, and Safety requirements.

    Significant differences in incubation times in sheep infected with bovine spongiform encephalopathy result from variation at codon 141 in the PRNP gene

    Get PDF
    The susceptibility of sheep to prion infection is linked to variation in the PRNP gene, which encodes the prion protein. Common polymorphisms occur at codons 136, 154 and 171. Sheep which are homozygous for the A<sub>136</sub>R<sub>154</sub>Q<sub>171</sub> allele are the most susceptible to bovine spongiform encephalopathy (BSE). The effect of other polymorphisms on BSE susceptibility is unknown. We orally infected ARQ/ARQ Cheviot sheep with equal amounts of BSE brain homogenate and a range of incubation periods was observed. When we segregated sheep according to the amino acid (L or F) encoded at codon 141 of the PRNP gene, the shortest incubation period was observed in LL141 sheep, whilst incubation periods in FF<sub>141</sub> and LF<sub>141</sub> sheep were significantly longer. No statistically significant differences existed in the expression of total prion protein or the disease-associated isoform in BSE-infected sheep within each genotype subgroup. This suggested that the amino acid encoded at codon 141 probably affects incubation times through direct effects on protein misfolding rates

    Lifetime of d-holes at Cu surfaces: Theory and experiment

    Get PDF
    We have investigated the hole dynamics at copper surfaces by high-resolution angle-resolved photoemission experiments and many-body quasiparticle GW calculations. Large deviations from a free-electron-like picture are observed both in the magnitude and the energy dependence of the lifetimes, with a clear indication that holes exhibit longer lifetimes than electrons with the same excitation energy. Our calculations show that the small overlap of d- and sp-states below the Fermi level is responsible for the observed enhancement. Although there is qualitative good agreement of our theoretical predictions and the measured lifetimes, there still exist some discrepancies pointing to the need of a better description of the actual band structure of the solid.Comment: 15 pages, 7 figures, 1 table, to appear in Phys. Rev.

    Ordered interfaces for dual easy axes in liquid crystals

    Get PDF
    International audienceUsing nCB films adsorbed on MoS 2 substrates studied by x-ray diffraction, optical microscopy and Scanning Tunneling Microscopy, we demonstrate that ordered interfaces with well-defined orientations of adsorbed dipoles induce planar anchoring locked along the adsorbed dipoles or the alkyl chains, which play the role of easy axes. For two alternating orientations of the adsorbed dipoles or dipoles and alkyl chains, bi-stability of anchoring can be obtained. The results are explained using the introduction of fourth order terms in the phenomenological anchoring potential, leading to the demonstration of first order anchoring transition in these systems. Using this phenomenological anchoring potential, we finally show how the nature of anchoring in presence of dual easy axes (inducing bi-stability or average orientation between the two easy axes) can be related to the microscopical nature of the interface. Introduction Understanding the interactions between liquid crystal (LC) and a solid substrate is of clear applied interest, the vast majority of LC displays relying on control of interfaces. However this concerns also fundamental problems like wetting phenomena and all phenomena of orientation of soft matter bulk induced by the presence of an interface. In LCs at interfaces, the so-called easy axes correspond to the favoured orientations of the LC director close to the interface. If one easy axis only is defined for one given interface, the bulk director orients along or close to this axis [1]. It is well known that, in anchoring phenomena, two major effects compete to impose the anchoring directions of a liquid crystal, first, the interactions between molecules and the interface, second, the substrate roughness whose role has been analyzed by Berreman [2]. The influence of adsorbed molecular functional groups at the interface is most often dominant with, for example in carbon substrates, a main influence of unsaturated carbon bonds orientation at the interface [3]. In common LC displays, there is one unique easy axis, but modifications of surfaces have allowed for the discovery of promising new anchoring-related properties. For instance, the first anchoring bi-stability has been established on rough surfaces, associated with electric ordo-polarization [4] and the competition between a stabilizing short-range term and a destabilizing long-range term induced by an external field, can induce a continuous variation of anchoring orientation [5]. More recently, surfaces with several easy axes have been studied extensively. It has been shown that control of a continuous variation of director pretilt, obtained in several systems [6, 7], is associated with the presence of two different easy axes, one perpendicular to the substrate (homeotropic) and one planar [7, 8]. Similar models can explain the continuous evolution of anchoring between two planar orientations observed on some crystalline substrates [9]. However, in the same time, two easy axes can also lead to anchoring bi-stability [10, 11] or discontinuous transitions of anchoring [9], which is not compatible with the model established to interpret observed control of pretilt. In order to be able to predict if bi-stability or continuous combination of the two easy axes occurs for one given system, it becomes necessary to understand the microscopic origin of the easy axes

    Physical and Antibacterial Properties of Peppermint Essential Oil Loaded Poly (ε-caprolactone) (PCL) Electrospun Fiber Mats for Wound Healing

    Get PDF
    The aim of this study was to fabricate and characterize various concentrations of peppermint essential oil (PEP) loaded on poly(ε-caprolactone) (PCL) electrospun fiber mats for healing applications, where PEP was intended to impart antibacterial activity to the fibers. SEM images illustrated that the morphology of all electrospun fiber mats was smooth, uniform, and bead-free. The average fiber diameter was reduced by the addition of PEP from 1.6 ± 0.1 to 1.0 ± 0.2 μm. Functional groups of the fibers were determined by Raman spectroscopy. Gas chromatography-mass spectroscopy (GC-MS) analysis demonstrated the actual PEP content in the samples. In vitro degradation was determined by measuring weight loss and their morphology change, showing that the electrospun fibers slightly degraded by the addition of PEP. The wettability of PCL and PEP loaded electrospun fiber mats was measured by determining contact angle and it was shown that wettability increased with the incorporation of PEP. The antimicrobial activity results revealed that PEP loaded PCL electrospun fiber mats exhibited inhibition against Staphylococcus aureus (gram-positive) and Escherichia coli (gram-negative) bacteria. In addition, an in-vitro cell viability assay using normal human dermal fibroblast (NHDF) cells revealed improved cell viability on PCL, PCLPEP1.5, PCLPEP3, and PCLGEL6 electrospun fiber mats compared to the control (CNT) after 48 h cell culture. Our findings showed for the first time PEP loaded PCL electrospun fiber mats with antibiotic-free antibacterial activity as promising candidates for wound healing applications

    INTERACTION OF RESEARCH AND SUBJECTS IN SOCIAL INTERVENTION STUDIES

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74684/1/j.1749-6632.1973.tb47621.x.pd
    • …
    corecore