232 research outputs found

    Innovations and best practice in undergraduate education.

    Get PDF
    University-based scientists hold the collective responsibility for educating the next generation of citizens, scientists and voters, but the degree to which they are individually trained and rewarded for this pursuit is variable. This F1000Research channel has its origin in a Society for Experimental Biology Conference held in Prague, 2015 and brings together researchers who excel at undergraduate education or the scholarship of teaching and learning to discuss challenges and best practices in contemporary higher science education

    Age versus stage: does ontogeny modify the effect of phosphorus and arbuscular mycorrhizas on above- and below-ground defence in forage sorghum?

    Get PDF
    Article first published online: 11 NOV 2013Arbuscular mycorrhizas (AM) can increase plant acquisition of P and N. No published studies have investigated the impact of P and AM on the allocation of N to the plant defence, cyanogenic glucosides. We investigated the effects of soil P and AM on cyanogenic glucoside (dhurrin) concentration in roots and shoots of two forage sorghum lines differing in cyanogenic potential (HCNp). Two harvest times allowed plants grown at high and low P to be compared at the same age and the same size, to take account of known ontogenetic changes in shoot HCNp. P responses were dependent on ontogeny and tissue type. At the same age, P-limited plants were smaller and had higher shoot HCNp but lower root HCNp. Ontogenetically controlled comparisons showed a P effect of lesser magnitude, and that there was also an increase in the allocation of N to dhurrin in shoots of P-limited plants. Colonization by AM had little effect on shoot HCNp, but increased root HCNp and the allocation of N to dhurrin in roots. Divergent responses of roots and shoots to P, AM and with ontogeny demonstrate the importance of broadening the predominantly foliar focus of plant defence studies/theory, and of ontogenetically controlled comparisons.Rebecca E. Miller, Roslyn M. Gleadow and Timothy R. Cavagnar

    Drought adversely affects tuber development and nutritional quality of the staple crop cassava (Manihot esculenta Crantz)

    Get PDF
    Cassava (Manihot esculenta Crantz) is the staple food source for over 850 million people worldwide. Cassava contains cyanogenic glucosides and can be toxic to humans, causing paralysing diseases such as konzo, and even death if not properly processed. Konzo epidemics are often associated with times of drought. This may be due to a greater reliance on cassava as it is drought tolerant, but it may also be due to an increase in cyanogenic glucosides. Episodic droughts are forecast to become more common in many cassava-growing regions. We therefore sought to quantify the effect of water-stress on both yield and cyanogenic glucoside concentration (CNc) in the developing tubers of cassava. Five-month-old plants were grown in a glasshouse and either well watered or droughted for 28 days. A subset of droughted plants was re-watered half way through the experiment. Droughted plants had 45% fewer leaves and lower tuber yield, by 83%, compared with well-watered plants. CNc was 2.9-fold higher in the young leaves of droughted plants, whereas CNc in tubers from droughted plants was 4-fold greater than in tubers from well-watered plants. Re-watered plants had a similar biomass to control plants, and lower CNc than droughted plants. These findings highlight the important link between food quality and episodic drought.Rebecca Vandegeer, Rebecca E. Miller, Melissa Bain, Roslyn M. Gleadow and Timothy R. Cavagnar

    Possible Jurassic age for part of Rakaia Terrane: implications for tectonic development of the Torlesse accretionary prism

    Get PDF
    Greywacke sandstone and argillite beds comprising Rakaia Terrane (Torlesse Complex) in mid Canterbury, South Island, New Zealand, are widely regarded as Late Triassic (Norian) in age based on the occurrence of Torlessia trace fossils, Monotis, and other taxa. This paleontological age assignment is tested using published 40Ar/39Ar mica and U-Pb zircon ages for these rocks and published and new zircon fission track (FT) ages. The youngest U-Pb zircon ages in the Rakaia Terrane rocks in mid Canterbury are Norian, whereas 10-20% of the 40Ar/39Ar muscovite ages are younger than Norian. Numerical modelling of these mica ages shows that they cannot have originated from partial thermal overprinting in the Torlesse prism if the thermal maximum was short-lived and early in the prism history (210-190 Ma), as commonly inferred for these rocks. The young component of mica ages could, however, be explained by extended residence (200-100 Ma) at 265-290deg.C in the prism. Early Jurassic (c. 189 Ma) zircon FT ages for sandstone beds from Arthur's Pass, the Rakaia valley, and the Hermitage (Mt Cook) are interpreted not to have experienced maximum temperatures above 210deg.C, and therefore cannot have been reduced as a result of partial annealing in the Torlesse prism. This is based on identification of a fossil Cretaceous, zircon FT, partial annealing zone in low-grade schists to the west, and the characteristics of the age data. The Early Jurassic zircon FT ages and the young component of 40Ar/39Ar mica ages are regarded therefore as detrital ages reflecting cooling in the source area, and constrain the maximum depositional age of parts of the Rakaia Terrane in mid Canterbury. The zircon FT data also show the initiation (c. 100 Ma) of marked and widespread Late Cretaceous cooling of Rakaia Terrane throughout Canterbury, which is attributed to uplift and erosion of inboard parts of the Torlesse prism due to continuing subduction accretion at its toe. The critical wedge concept is proposed as a new framework for investigating the development of the Torlesse Complex. The Rakaia Terrane may have formed the core of an accretionary wedge imbricated against the New Zealand margin during the Middle or Late Jurassic. Late Jurassic nonmarine sediments (e.g., Clent Hills Formation) accumulated upon the inner parts of the prism as it enlarged, emerged, and continued to be imbricated. Exhumation of Otago Schist from c. 135 Ma may mark the development of a balance (steady state) between sediments entering the prism at the toe and material exiting at the inboard margin. The enlargement of the area of exhumation to all of Canterbury from c. 100 Ma may reflect a dynamic response to widening of the prism through the accretion of Cretaceous sediments. The model of a dynamic critical wedge may help to explain the various expressions of the Rangitata Orogeny

    Finite temperature stability and dimensional crossover of exotic superfluidity in lattices

    Full text link
    We investigate exotic paired states of spin-imbalanced Fermi gases in anisotropic lattices, tuning the dimension between one and three. We calculate the finite temperature phase diagram of the system using real-space dynamical mean-field theory in combination with the quantum Monte Carlo method. We find that regardless of the intermediate dimensions examined, the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state survives to reach about one third of the BCS critical temperature of the spin-density balanced case. We show how the gapless nature of the state found is reflected in the local spectral function. While the FFLO state is found at a wide range of polarizations at low temperatures across the dimensional crossover, with increasing temperature we find out strongly dimensionality-dependent melting characteristics of shell structures related to harmonic confinement. Moreover, we show that intermediate dimension can help to stabilize an extremely uniform finite temperature FFLO state despite the presence of harmonic confinement.Comment: 5 pages, 3 figure

    Utilization of a high-throughput shoot imaging system to examine the dynamic phenotypic responses of a C(4) cereal crop plant to nitrogen and water deficiency over time

    Get PDF
    The use of high-throughput phenotyping systems and non-destructive imaging is widely regarded as a key technology allowing scientists and breeders to develop crops with the ability to perform well under diverse environmental conditions. However, many of these phenotyping studies have been optimized using the model plant Arabidopsis thaliana. In this study, The Plant Accelerator(®) at The University of Adelaide, Australia, was used to investigate the growth and phenotypic response of the important cereal crop, Sorghum bicolor L. Moench and related hybrids to water-limited conditions and different levels of fertilizer. Imaging in different spectral ranges was used to monitor plant composition, chlorophyll, and moisture content. Phenotypic image analysis accurately measured plant biomass. The data set obtained enabled the responses of the different sorghum varieties to the experimental treatments to be differentiated and modelled. Plant architectural instead of architecture elements were determined using imaging and found to correlate with an improved tolerance to stress, for example diurnal leaf curling and leaf area index. Analysis of colour images revealed that leaf 'greenness' correlated with foliar nitrogen and chlorophyll, while near infrared reflectance (NIR) analysis was a good predictor of water content and leaf thickness, and correlated with plant moisture content. It is shown that imaging sorghum using a high-throughput system can accurately identify and differentiate between growth and specific phenotypic traits. R scripts for robust, parsimonious models are provided to allow other users of phenomic imaging systems to extract useful data readily, and thus relieve a bottleneck in phenotypic screening of multiple genotypes of key crop plants.E.H. Neilson, A.M. Edwards, C.K. Blomstedt, B. Berger, B. Lindberg Møller and R.M. Gleado

    Interferometric imaging with the 32 element Murchison Wide-field Array

    Get PDF
    The Murchison Wide-field Array (MWA) is a low frequency radio telescope, currently under construction, intended to search for the spectral signature of the epoch of re-ionisation (EOR) and to probe the structure of the solar corona. Sited in Western Australia, the full MWA will comprise 8192 dipoles grouped into 512 tiles, and be capable of imaging the sky south of 40 degree declination, from 80 MHz to 300 MHz with an instantaneous field of view that is tens of degrees wide and a resolution of a few arcminutes. A 32-station prototype of the MWA has been recently commissioned and a set of observations taken that exercise the whole acquisition and processing pipeline. We present Stokes I, Q, and U images from two ~4 hour integrations of a field 20 degrees wide centered on Pictoris A. These images demonstrate the capacity and stability of a real-time calibration and imaging technique employing the weighted addition of warped snapshots to counter extreme wide field imaging distortions.Comment: Accepted for publication in PASP. This is the draft before journal typesetting corrections and proofs so does contain formatting and journal style errors, also has with lower quality figures for space requirement

    The Murchison Widefield Array

    Get PDF
    It is shown that the excellent Murchison Radio-astronomy Observatory site allows the Murchison Widefield Array to employ a simple RFI blanking scheme and still calibrate visibilities and form images in the FM radio band. The techniques described are running autonomously in our calibration and imaging software, which is currently being used to process an FM-band survey of the entire southern sky.Comment: Accepted for publication in Proceedings of Science [PoS(RFI2010)016]. 6 pages and 3 figures. Presented at RFI2010, the Third Workshop on RFI Mitigation in Radio Astronomy, 29-31 March 2010, Groningen, The Netherland

    Statistics for Fission-Track Thermochronology

    Get PDF
    This chapter introduces statistical tools to extract geologically meaningful information from fission-track (FT) data using both the external detector and LA-ICP-MS methods. The spontaneous fission of 238U is a Poisson process resulting in large single-grain age uncertainties. To overcome this imprecision, it is nearly always necessary to analyse multiple grains per sample. The degree to which the analytical uncertainties can explain the observed scatter of the single-grain data can be visually assessed on a radial plot and objectively quantified by a chi-square test. For sufficiently low values of the chi-square statistic (or sufficiently high p values), the pooled age of all the grains gives a suitable description of the underlying ‘true’ age population. Samples may fail the chi-square test for several reasons. A first possibility is that the true age population does not consist of a single discrete age component, but is characterised by a continuous range of ages. In this case, a ‘random effects’ model can constrain the true age distribution using two parameters: the ‘central age’ and the ‘(over)dispersion’. A second reason why FT data sets might fail the chi-square test is if they are underlain by multimodal age distributions. Such distributions may consist of discrete age components, continuous age distributions, or a combination of the two. Formalised statistical tests such as chi-square can be useful in preventing overfitting of relatively small data sets. However, they should be used with caution when applied to large data sets (including length measurements) which generate sufficient statistical ‘power’ to reject any simple yet geologically plausible hypothesis
    corecore