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Abstract

This Chapter introduces statistical tools to extract geologically meaningful information from fission-
track (FT) data using both the external detector and LA-ICP-MS methods. The spontaneous fission of
238 is a Poisson process resulting in large single grain age uncertainties. To overcome this imprecision,
it is nearly always necessary to analyse multiple grains from a single sample. The degree to which the
analytical uncertainties can explain the observed scatter of the single grain data can be visually assessed
on a radial plot, and objectively quantified by a Chi-square test. For sufficiently low values of the Chi-
square statistic (or sufficiently high p-values), the pooled age of all the grains gives a suitable description
of the underlying ‘true’ age population. Samples may fail the Chi-square test for several reasons. A first
possibility is that the true age population does not consist of a single discrete age component, but is
characterised by a continuous range of ages. In this case, a ‘random effects’ model can constrain the true
age distribution using two parameters: the ‘central age’ and the ‘(over)dispersion’. A second reason why
FT datasets might fail the Chi-square test is if they are underlain by multimodal age distributions. Such
distributions may consist of discrete age components, continuous age distributions, or a combination of
the two. Formalised statistical tests such as Chi-square can be useful in preventing overfitting of relatively
small datasets. However, they should be used with caution when applied to large datasets (including
length measurements) which generate sufficient statistical ‘power’ to reject any simple yet geologically
plausible hypothesis.

6.1 Introduction

2381J is the heaviest naturally occurring nuclide in the Solar System. Like all nuclides heavier than 2°%Pb,
it is physically unstable and undergoes radioactive decay to smaller, more stable nuclides. 99.9998% of the
238U nuclei shed weight by disintegrating into eight He-nuclei (a-particles) and a 2°°Pb atom, forming the
basis of the U-Pb and U-Th-He clocks. The remaining 0.0002% of the 23®U undergoes spontaneous fission,
forming the basis of FT geochronology (Price and Walker 1963, Fleischer et al. 1965). Because spontaneous
fission of 238U is such a rare event, the surface density of fission tracks (in counts per unit area) is 10-11
orders of magnitude lower than the molar abundances of 23U and *He, respectively. So whereas the U-Pb
and (U-Th)/He methods are based on mass spectrometric analyses of billions of Pb and He atoms, FT ages
are commonly based on manual counts of at most a few dozen features. Due to these low numbers, the FT
method is a low precision technique. Whereas the analytical uncertainty of U-Pb and (U-Th)/He ages is
expressed in % or %o-units, it is not uncommon for single-grain F'T age uncertainties to exceed 10% or even
100% (Sect. 6.2). Early attempts to quantify these uncertainties (McGee and Johnson 1979, Johnson et al.
1979) were criticised by Green (1981a,b), who subsequently engaged in a fruitful collaboration with two
statisticians —Geoff Laslett and Rex Galbraith— to eventually solve the problem. Thanks to the combined
efforts of the latter two people, it is fair to say that the statistics of the FT method are better developed
than those of any other geochronological technique. Several statistical tools that were originally developed
for the FT method have subsequently found applications in other dating methods. Examples of this are
the radial plot (Sect. 6.3), which is routinely used in luminescence dating (Galbraith 2010b), random effects



models (Sect. 6.4.2), which have been generalised to (U-Th)/He (Vermeesch 2010) and U-Pb dating (Rioux
et al. 2012), and finite mixture models (Sect. 6.5), which were adapted for detrital U-Pb geochronology
(Sambridge and Compston 1994).

The statistical analysis of fission tracks is a rich and diverse field, and this short Chapter cannot possibly
cover all its intricacies. Numerate readers are referred to the book by Galbraith (2005), which provides a
comprehensive, detailed, and self-contained review of the subject, from which the present Chapter heavily
borrows. The Chapter comprises five Sections, which address statistical issues of progressively higher order.
Sect. 6.2 introduces the FT age equation using the External Detector Method (EDM), which offers the
most straightforward and elegant way to estimate single-grain age uncertainties, even in grains without
spontaneous fission tracks. Section 6.3 compares and contrasts different ways to visually represent multi-
grain assemblages of FT data, including kernel density estimates, cumulative age distributions, and radial
plots. Sect. 6.4 reviews the various ways to estimate the ‘average’ age of such multi-grain assemblages,
including the arithmetic mean age, the pooled age, and the central age. This Section will also introduce a
Chi-square test for age homogeneity, which is used to assess the extent to which the scatter of the single-
grain ages exceeds the formal analytical uncertainties obtained from Sect. 6.2. This leads to the concept of
‘overdispersion’ (Sect. 6.4.2) and more complex distributions consisting of one or several continous and/or
discrete age components. Sect. 6.5 discusses three classes of mixed effects models to resolve discrete mixtures,
continuous mixtures, and minimum ages respectively. It will show that these models obey the classical bias-
variance tradeoff, which will lead to a cautionary note regarding the use of formalised statistical hypothesis
tests for F'T interpretation. Finally, Sect. 6.6 will give the briefest of introductions to some statistical aspects
of thermal history modelling, a more comprehensive discussion of which is provided in Chapt. 3 (Ketcham
2018). In recent years, several fission track laboratories around the world have abandoned the elegance and
robustness of the EDM for the convenience of ICP-MS-based measurements. Unfortunately, the statistics of
the latter are less straightforward and less well developed than the EDM. Sect. 6.7 presents an attempt to
deal with this problem.

6.2 The age equation

The fundamental FT age equation is given by:

1 /\D s
t=5n <1+M[238%]R> (6.1)

where A\p is the total decay constant of 233U (1.55125x100yr—1; Jaffey et al. 1971), Ay is the fission
decay constant (7.9-8.7x107*"yr~!; Holden and Hoffman 2000)!., p, is the density (tracks per unit area)
of the spontaneous fission tracks on an internal crystal surface, [2*8U] is the current number of 233U atoms
per unit volume, and R is etchable range of the fission tracks, which is half the equivalent isotropic FT
length. [*38U] can be determined by irradiating the (etched) sample with thermal neutrons in a reactor.
This irradiation induces synthetic fission of 23°U in the mineral, producing tracks that can be monitored by
attaching a mica detector to the polished mineral surface and etching this monitor subsequent to irradiation.
Using this External Detector Method (EDM), Eq. 6.1 can be rewritten as:
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where ( is a calibration factor (Hurford and Green 1983), p; is the surface density of the induced fission
tracks in the mica detector, and py is the surface density of the induced fission tracks in a dosimeter glass of
known (and constant) U concentration. The latter value is needed to ‘recycle’ the calibration constant from
one irradiation batch to the next, as neutron fluences might vary through time, or within a sample stack.

1The uncertainty associated with the fission decay constant vanishes when Ay is folded into the (-calibration constant. This
is one of the main reasons why the ¢(-method was developed (see Chap. 1 Hurford 2018)



ps, pi and pg are unknown but can be estimated by counting the number of tracks N, over a given area A,

74y

(where “*’ is either ‘s’ for ‘spontaneous’, 1’ for ‘induced’ or ‘d’ for ‘dosimeter’):
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It is customary for the spontaneous and induced fission tracks to be counted over the same area (i.e.,

As = A;), either using an automated microscope stage (Smith and Leigh-Jones 1985, Dumitru 1993) or by

simply repositioning the mica detector on the grain mount after etching (Jonckheere et al. 2003). Using
these measurements, the estimated FT age (£) is given by

(6.3)
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where CA is obtained by applying Eq. 6.4 to an age standard and rearranging. Eqs. 6.2 and 6.4 assume
that the ratio of the etchable range (R) between the grain and the mica detector is the same for the sample
and the standard. Violation of this assumption leads to apparent FT ages of unclear geological significance.
This is an important caveat as samples with shortened tracks are very common. See Sect. 6.6 and Chapt. 3
(Ketcham 2018) for further details on how to deal with this situation. The standard error s[t] of the single
grain age estimate is given by standard first order Taylor expansion:

S = (gz)m +( ﬁs):[w +( (jji)gsw ¥ (fjéd)?swd? (6.5)

Where it is important to point out that all covariance terms are zero because é , Ny, N; and Ny are
independent variables?. To simplify the calculation of the partial derivatives, we note that In(1 + z) ~ z if
x < 1 so that, for reasonably low Ng/N; values, Eq. 6.4 reduces to

N
N;
Using this linear approximation, it is easy to show that Eq. 6.5 becomes:
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The standard error of the calibration constant é is obtained by repeated measurements of the age standard
and will not be discussed further. The standard errors of N, N; and N, are governed by the Poisson
distribution, whose mean equals its variance. This crucial property can be illustrated with a physical
example in which a mica print attached to a dosimeter glass is subdivided into a number of equally sized
squares (Fig. 6.1, left). Counting the number of induced fission tracks Ny in each square yields a skewed
frequency distribution whose mean indeed equals its variance (Fig. 6.1, right). Applying this fact to Eq.

6.7, we can replace s[N,]? with Ny, s[N;]? with N; and s[N4)? with Ny, and obtain the following expression
for the standard error of the estimated FT age:

N 2
i 8 (5@1) PRI 63)

Note that this equation breaks down if Ny = 0. There are two solutions to this problem. The easiest
way is to replace Ny and N; with Ng+1/2 and N;+1/2, respectively (Galbraith 2005, p.80). A second (and
preferred) approach is to calculate exact (and asymmetric) confidence intervals. See Galbraith (2005, p.50)
for further details about this procedure.

1.

2N, N; are independent within a single grain, but of course not between different grains of the same sample, as the
spontaneous and induced track counts both depend on the U-concentration, which tends to vary significantly from grain to
grain (McGee and Johnson 1979, Johnson et al. 1979, Green 1981b, Galbraith 1981, Carter 1990)
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Fig. 6.1: Left: induced fission tracks recorded in a mica detector attached to a dosimeter glass. Numbers
indicate the number of tracks counted in 48 150x150 pm-sized areas. Colours indicate single (yellow),
double (blue) and triple (red) etch pits. Dosimeter glasses exhibit a uniform U-concentration so that the
observed variation in the number of tracks is only due to Poisson statistics. Fission tracks were counted with
FastTracks image recognition software (see Chap. 4 Gleadow 2018). Right: the frequency distribution of the
FT counts, which has a mean of 3.7 and a variance of 3.5 counts per graticule, consistent with a Poisson
distribution.

6.3 Fission track plots

The single grain uncertainties given by Eq. 6.8 tend to be very large. For example, a grain containing just
4 spontaneous fission tracks (i.e., Ny=4) is associated with an analytical uncertainty of v/4/4=50% even
ignoring the analytical uncertainty associated with the (-calibration constant, the dosimeter glass, or the
induced FT count. The single grain age precision of the FT method, then, is orders of magnitude lower than
that of other established geochronometers such as “°Ar /39 Ar or 206Pb /238U, which achieve percent or permil
level uncertainties. To overcome this limitation and ‘beat down the noise’, it is important that multiple grains
are analysed from a sample and averaged using methods described in Sect. 6.4. Multi-grain assemblages of
FT data are also very useful for sedimentary provenance analysis and form the basis of a new field of research
called ‘detrital thermochronology’ (Bernet 2018, Carter 2018). Irrespective of the application, it is useful for
any multi-grain FT dataset to first be assessed visually. This Section will introduce three graphical devices
to do this: cumulative age distributions, (kernel) density estimates and radial plots. To illustrate these
graphical devices as well as the different summary statistics of Sect. 6.4, consider the four different geological
scenarios shown in Fig. 6.2:

A. A rapidly cooled volcanic rock extruded at 15 Ma.

B. A slowly cooled intrusive rock exhibiting a range of Cl/F ratios resulting in a 150 Ma + 20% range of
apparent F'T ages.

C. A detrital sample collected from a river draining two volcanic layers extruded at 15 and 75 Ma,
respectively.

D. A detrital sample collected from a river draining lithologies A and B.



6.3.1 The Cumulative Age Distribution (CAD)

The cumulative distribution function cdf(x) describes the fraction of the detrital age population whose age
is less than or equal to x:

cdf (z) = P(t < x) (6.9)

Under Scenario I, the cdf consists of a simple step function, indicating that 0% of the grains are younger,
and 100% are older than the extrusive age (Fig. 6.2.1-a). Under Scenario II, the cdf is spread out over a wider
range, so that 90% of the ages are between 90 and 210 Ma (Fig. 6.2.1I-a). Under Scenario III (Fig. 6.2.I1I-a),
the cdf consists of two discrete steps at 15 and 75 Ma, the relative heights of which depend on the hypsometry
of the river catchment and the spatial distribution of erosion (Vermeesch 2007). Finally, under Scenario IV,
the cdf consists of a discrete step from 0 to 50% at 15 Ma, followed by a sigmoidal rise to 100% at 75Ma
(Fig. 6.2.1V-a).

In reality, the cdfs of Scenarios I-IV are, of course, unknown and must be estimated from sample data,
by means of an empirical cumulative distribution function (ecdf), which may be referred to as a Cumulative
Age Distribution (CAD) in a geochronological context (Vermeesch 2007). A CAD is simply a step function
in which the single grain ages (Z;, for j=1—n) are plotted against their rank order:

CAD(x) =Y 1(f; < x)/n (6.10)
j=1
where 1(TRUE) = 1 and 1(FALSE) = 0. In contrast with the true cdfs, the measured CADs are invariably
smoother, as the analytical uncertainties spread the ages out over a greater range. Because the uncertainties
of FT ages are so large, the difference between the measured CADs and the true cdfs is very significant.
Sections 6.4 and 6.5 of this Chapter present several algorithms to extract the key parameters of the true age
distribution (i.e, the cdfs) from the measurement distribution (CADs).
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6.3.2 (Kernel) Density Estimates (KDEs)
The probability density function (pdf) is defined as the first derivative of the cdf:

dlcdf (y)]
dy

x

= odfe) = [ )y (6.11)

x — 00

pdf (z) =

Under Scenario I, the pdf is a discrete peak of zero width and infinite height, marking the timing of
the volcanic eruption (Fig. 6.2.I-b). In contrast, under Scenario II, the pdf is a smooth (a)symmetric bell
curve reflecting the spread in closing temperatures and, hence, ages, associated with the range of Cl/F-ratios
present in apatites of this slowly cooled pluton (Fig. 6.2.II-b). Under Scenario III, the pdf consists of two
discrete spikes corresponding to the two volcanic events (Fig. 6.2.11I-b). Finally, under Scenario IV, the pdf
effectively combines those of Scenarios I and II (Fig. 6.2.IV-b). The pdfs, like the cdfs discussed before,
are unknown but can be estimated from sample data. There are several ways to do this. Arguably the
simplest of these is the histogram, in which the observations are grouped into a number of discrete bins.
Kernel Density Estimates (KDEs) are a continuous alternative to the histogram, which are constructed by
arranging the measurements from young to old along the time axis, adding a Gaussian ‘bell curve’ (or any
other symmetric shape) on top of them, and then summing those to create one continuous curve (Silverman
1986, Vermeesch 2012). The standard deviation of the Gaussian ‘kernel’ is called the ‘bandwidth’ of the
estimator and may be chosen through a host of different approaches, a proper discussion of which falls
outside the scope of this review (Abramson 1982, Silverman 1986, Botev et al. 2010, Vermeesch 2012). An
important feature of all these algorithms is that the bandwidth monotically decreases with increasing sample
size. Please note that the so-called ‘Probability Density Plot’ (PDP, not to be confused with pdf!), in which
the analytical uncertainty (or 0.6 times the analytical uncertainty, Brandon 1996) is used as a ‘bandwidth’
does not possess this feature. Therefore PDPs are not proper density estimates and consequently their use
is not recommended (Galbraith 1998, Vermeesch 2012). Like the CAD, which is a smooth version of the
cdf, KDEs (and histograms) are smooth versions of the pdf. But whereas the CAD has only been smoothed
once, histograms and KDEs are smoothed twice, once by the analytical uncertainties, and once by the width
of the bins or kernels. Because the analytical uncertainties of FT data are so big, the components of FT age
distributions are often spread out very widely, resulting in poorly resolved KDEs (blue curves in Figs. 6.2.b).

6.3.3 Radial plots

Single grain fission track age uncertainties are not only very large, they generally are also variable (‘het-
eroscedastic’). Due to a combination of Poisson sampling statistics and variable U-concentrations, the
analytical uncertainties propagated using Eq. 6.8 may vary over an order of magnitude within the same
sample. Neither CADs nor KDEs (let alone PDPs) are able to capture this uncertainty. The radial plot is
a graphical device that was specifically designed to address this issue (Galbraith 1988, 1990, Dunkl 2002,
Vermeesch 2009). Given j=1...n numerical values z; and their analytical uncertainties o}, the radial plot
is a bivariate (z;,y;) scatterplot setting out a standardised estimate (y; = (z; — 25)/0;, where z, is some
reference value) against the single grain precision (x; = 1/0;). For FT data using the EDM?, it is convenient
to use the following definitions for z; and o; (Galbraith 1990):

. Ny +3/8
. — arcs — 8 6.12
z; = arcsin \/st + N, +3/4 (6.12)

and

1
- 2y/N,; + Ny +1/2

3The remainder of this and the next three Sections of this Chapter will focus on the EDM. Alternative equations for ICP-MS
based fission track data are provided in Sect. 6.7.

(6.13)
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Thus, precise measurements plot towards the right-hand side of the radial plot whilst imprecise measure-
ments plot closer to the origin. A single grain age may be read off by extrapolating a line from the origin
(0,0) of the radial plot through the sample point (x;,y;) to a radial scale plotted at some convenient distance.
Similarly, the analytical uncertainty can be obtained by extrapolating lines from the origin to the radial scale
through the top and the bottom of an imaginary 2o-error bar added to each sample point. Finally, drawing
two parallel lines at 20 distances from either side of the origin allow the analyst to visually assess whether
all the single grain ages within a sample agree within the analytical uncertainties.

Revisiting Scenario I of Fig. 6.2, the data points plot within a 20 band on the radial plot, consistent
with a single discrete age component (Fig. 6.2.I-c). Under Scenario II, the data are more dispersed and
scatter beyond the 20 band, reflecting the dispersion of the underlying geological ages (Fig. 6.2.1I-c). Under
Scenario III, the data are randomly scattered along two linear trajectories which represent the two volcanic
events (Fig. 6.2.ITI-¢). Finally, Scenario IV combines the radial patterns of Scenarios I and II, as expected
(Fig. 6.2.IV-¢). Of all the summary plots in Fig. 6.2, the radial plot contains the largest amount of quantita-
tive information about the age measurements and about the underlying geological ages. Using the graphical
design principles of Tufte (1983), the radial plot exhibits a far higher ‘ink-to-information ratio’ than the
CAD, KDE or histogram. We will therefore use it as a basis from which to introduce the summary statistics
discussed in the next Section of this Chapter.

6.4 Summary statistics

The previous Sections have shown that the presence of large and highly variable analytical uncertainties can
easily obscure the underlying age distribution and all the geologically meaningful information encoded by it.
The next two Sections will introduce some useful summary statistics which can be used to disentangle that
geologically meaningful information from the random noise produced by the Poisson counting uncertainties.

6.4.1 The pooled age

Let us begin with the single discrete age component in Scenario I of the previous Section. Several approaches
can be used to estimate this age from a set of noisy sample data. Panels I-a, I-b and I-c of Fig. 6.2 show
that the single grain age estimates follow an asymmetric probability distribution (symmetric when plotted
on a logarithmic scale) which is skewed toward older ages. This is a consequence of the fact that, if N,; and
N;; are sampled from two independent Poisson distributions with expected values ps and p;, respectively,
then the conditional probability of Ny; on Ng; 4+ N;; follows a Binomial distribution:

Nsj + Nij

P(st\st Jer‘j) = < N
sj

>9N”'<1 — o)™ = f(6) (6.14)
where 6 = p,/(ps + p;) and (}) is the Binomial coefficient. Given a sample of n sets of FT counts, this
leads to the following (log-)likelihood function for 6:

L(0)=> Inf;(0) (6.15)
j=1

where f;(0) is the probability mass function for the jt" grain defined in Eq. 6.14. As a first approach to
obtaining an ‘average’ age, one might be tempted to simply take the arithmetic mean of the single grain age
estimates. Unfortunately, the arithmetic mean does not cope well with outliers and asymmetric distributions
and therefore yields poor estimates of the geological age. The geometric mean fares much better. It is closely
related to the ‘central age’, which is discussed in Sect. 6.4.2. The ‘pooled age’ is obtained by maximising
Eq. 6.15 to obtain a ‘maximum likelihood’ estimate (é), and substituting e for N,/N; in Eq. 6.2, where
Ny, = 2?21 Ng; and N; = 2?21 N;j. This is equivalent to taking the sum of all the spontaneous and
induced tracks, respectively, and treating these as if they belonged to a single crystal. This procedure yields



the correct age if the true ages are indeed derived from a single discrete age component (i.e., Scenario I).
However, if there is any dispersion of the true FT ages, as is the case under Scenario II, then the pooled age
will be biased towards values that are far too old. Whether this is the case or not can be verified using a
formalised statistical hypothesis test. Galbraith (2005, p.46) shows that in the absence of excess dispersion,
the following statistic:

n
2=t > (N5 N — Niy No)* (6.16)
NsN; < Nsj + Nij

j=1
follows a Chi-square distribution with n-1 degrees of freedom. The probability of observing a value greater
than ¢? under this distribution is called the p-value and can be used to formally test the assumption of zero
dispersion. A cutoff of 0.05 is often used as a criterion to abandon the single grain age model of Scenario I
and, hence, the pooled age.

6.4.2 Central ages and ‘overdispersion’

A more meaningful estimate for Scenario II is obtained using a two-parameter ‘random effects’ model, in
which the true ps/p;-ratio is assumed to follow a log-normal distribution with location parameter p and scale
parameter o (Galbraith and Laslett 1993):

In(ps/pi) ~ N(n,0?) (6.17)

This model gives rise to a two-parameter log-likelihood function:

L(p,0%) =) Inf;(u,0%) (6.18)
j=1

where the probability mass function f;(u,0?) is defined as:

oo

j —Nsj—Nij
f( 0_2) - st + Nz’j / eBNsj (1 4 eﬁ) :
e B Ng; o/ 2me(B—w)?/(202)

in which the FT ratios are subject to two sources of variation: the Poisson uncertainty described by
Eq. 6.15 and an ‘(over)dispersion’ factor 0. Maximising Eq. 6.18 results in two estimates (i and & and
their respective standard errors. Substituting e for N,/N; in Eq. 6.2 produces the so-called ‘central age’.
0 estimates the overdispersion, and quantifies the excess scatter of the single grain ages which cannot be
explained by the Poisson counting statistics alone. This dispersion can be just as informative as the central
age itself, as it encodes geologically meaningful information about the compositional heterogeneity and
cooling history of the sample. In the absence of excess dispersion, i.e. if =0, the central age equals the
pooled age, so there is not really any reason to use the pooled age at all.

dp (6.19)
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6.5 Mixture models

A FT dataset may fail the Chi-square test introduced in the previous Section for different reasons. The
true ages may exhibit excess scatter according to Eq. 6.18. Or it may be so that there are more than
one age component (Galbraith and Green 1990, Galbraith and Laslett 1993). These components could
either be discrete age peaks (Scenario III), or they could be any combination of discrete and continuous age
components (Scenario IV).



6.5.1 Finite mixtures

Finite mixture models are a generalisation of the discrete age model of Scenario I in which the true ages are
not derived from a single, but from multiple age populations (Galbraith and Green 1990). Scenario III is
an example of this with two such components. In contrast with the common age model of Scenario I, which
is completely described by a single parameter (6, or the pooled age), and the random effects model, which
comprises two parameters (1 and o, or the central age and overdispersion), the finite mixture of Scenario
IIT requires three parameters. These are the age of the first component, the age of the second component,
and the proportion of the grains belonging to the first component. The proportion belonging to the second
component is simply the complement of the latter value. Generalising to N components, the log-likelihood
function becomes:

n N N-1
E(wk,ﬁk,kzl...N):Zha [Zﬂkfj(gk)] Withﬂ'Nzl—Zﬂ'k (620)
j=1 k=1 k=1

where f;(0y) is given by Eq. 6.14. Eq. 6.20 can be solved numerically. Applying it to the single component
dataset of Scenario I again yields the pooled age as a special case. The detrital FT ages in Scenario III
clearly fall into two groups so it is quite evident that there are two age components. Unfortunately the
situation is not always this clear. Due to the large single grain age uncertainties discussed in Sect. 6.2,
the boundaries between adjacent age components are often blurred, making it difficult to decide how many
‘peaks’ to fit. Several statistical approaches may be used to answer this question. One possibility is to use
a log-likelihood ratio test. Suppose that we have solved Eq. 6.20 for the case of N=2 age components, and
denote the corresponding maximum log-likelhood value as £5. We then consider an alternative model with
N=3 components. This results in two additional parameters (m3 and #3) and a new maximum log-likelihood
value, £3. We can assess whether the three component model is a significant improvement over the two
component fit by comparing twice the difference between L3 and L9 to a Chi-square distribution with two
degrees of freedom (because we have added two additional parameters) and calculating the corresponding
p-value like before. An illustration of the log-likelihood ratio test is provided in Sect. 6.5.2. An alternative
approach is to maximise the so-called Bayes Information Criterion (BIC), which is defined as

BIC = =2L0: +p In(n) (6.21)

where L4z is the maximum log-likelihood of a model comprising p parameters and n grains. A worked
example of this method is omitted for brevity and the reader is referred to Galbraith (2005, p.91) for further
details.

6.5.2 Continuous mixtures

So far we have considered pdfs consisting of a single discrete age peak (Scenario I), a single continuous
age distribution (Scenario II) and multiple discrete age peaks (Scenario III). The logical next step is to
consider multiple continuous age distributions (Jasra et al. 2006). In principle such models can be obtained
by maximising the following likelihood function

n N N-1
E(?Tk,uk,a,%,kzl...N):Zln [chfj(uk,oi)] with 7y =1 — Zwk (6.22)
j=1  Lk=1 k=1

where f;(ug, 0',%) is given by Eq. 6.19. However, in reality this is often impractical due to the high num-
ber of parameters involved, which require exceedingly large datasets. In detrital geochronology, the analyst
rarely knows that the data are underlain by a continuous mixture and so it is tempting to reduce the number
of unknown parameters by simply assuming a discrete mixture. Unfortunately, this is fraught with problems
as well since there is no upper bound on the number of discrete age components to fit to a continuous dataset.
To illustrate this point, let us reconsider the dataset of Scenario II, this time applying a finite mixture model
rather than the random effects model of Sect. 6.4.2. For a small sample of n=10 grains, the Chi-square test

10



for age homogeneity yields a p-value of 0.47, which is above the 0.05 cutoff and thus provides insufficient evi-
dence to reject the common age model (Table 6.1 and Fig. 6.3.a). Increasing the sample size to n=25 results
in a p-value of 0.03, justifying the addition of additional model parameters (Fig. 6.2.1-c). Further increasing
the sample size to n=100 reduces the likelihood of the common age model (Eq. 6.15) and results in a p-value
of 0.0027, well below the 0.05 cutoff. Let us now replace the common age model with a two component finite
mixture model. For the same 100-grain sample, this increases the log-likelihood from -4598.3 to -4591.4
(Table 6.1). Using the log-likelihood ratio test introduced in Sect. 6.5.1, that corresponds to a Chi-square
value of 2 x (4598.3 - 4591.4) = 13.8 and a p-value of 0.001, lending support to the abandonment of the
single age model in favour of the two parameter model (Fig. 6.3.b). However, doing the same calculation for
a three component model yields a log-likelihood of -4590.6 and a Chi-square value of 2 x (4591.4 - 4590.6)
= 1.6, resulting in an insignificant p-value of 0.45 (Table 6.1). Thus, the 100-grain sample does not support
the three component model. It is only when the sample size is increased from 100 to 1000 grains that the
Chi-square test gains enough ‘power’ to justify the three component finite mixture model (Fig. 6.3.c). It
is easy to see that this trend continues ad infinitum: with increasing sample size, it is possible to add ever
larger numbers of components (Fig. 6.3).

One might object to this hypothetical example by noting that the finite mixture model is clearly inap-
propriate for a dataset that is derived from a continuous mixture. But the key point is that all statistical
models are inappropriate to some degree. Even the random effects model is a mathematical abstraction
which does not exist in the real world. True age distributions (pdfs) may be approximately (log)normal as in
Scenario I, but they are never exactly so. Given a sufficiently large sample, formalised statistical hypothesis
tests such as Chi-square are always able to detect even the most minute deviation from any hypothetical
age model and thereby provide statistical justification to add further parameters. This is important in the
common situation where one is interested in the youngest age component of a fission track age distribution,
for example when one aims to calculate ‘lag times’ and estimate exhumation rates (Garver et al. 1999, Ber-
net 2018). It would be imprudent to estimate the lag-time by applying a general purpose multi-component
mixture model and simply picking the youngest age component. This would provide a biased estimate of
the minimum age, which would steadily drift towards younger values with increasing sample size (Fig. 6.3).
Instead, it is better to use a simpler but more stable and robust model employing three? or four parameters
to explicitly determine the minimum age component:

L(m,0,p,0%) = In[af;(0) + (1 —m)f} (1, 0?)] (6.23)
j=1

where f;(6) is given by Eq. 6.14 and fj(u,0?) is a truncated version of Eq. 6.19 (Galbraith and Laslett
1993). Applying this model to the synthetic example of Scenario IV correctly yields the age of the youngest
volcanic unit regardless of sample size (Fig. 6.2.1V-c). In conclusion, statistical hypothesis tests such as
Chi-square can be used to prevent overinterpreting perceived ‘clusters’ of data which may arise from random
statistical sampling fluctuations. But they must be used with caution, bearing in mind the simplifying
assumptions which all mathematical models inevitably make, and the dependence of test statistics and p-
values on sample size. Ignoring this dependence may lead to statistical models which might make sense in
a mathematical sense, but have little or no geological relevance. This note of caution applies not only to
mixture modelling but even more so to thermal history modelling, as will be discussed next.

6.6 Inverse modelling

So far in this Chapter we have made the implicit assumption (in Eq. 6.2) that all fission tracks have the same
length. In reality, however, this is not the case, and the length of (apatite) fission tracks varies anywhere
between 0 and 16pm as a function of the thermal history and chemical composition of a sample (Gleadow

4Eq. 6.23 may be simplified by imposing the requirement that u = e, which significantly benefits numerical stability, while
having only a minor effect on the accuracy of 6.
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Ly p(x3) Lo p(x3) L3 p(x3) Ly
n=10 | -422.4 067  -422.0 1.00 24220 1.00  -422.0
n=100 | -4598.3 0.001 -4591.4  0.45  -4590.6 1.00  -4590.6
n=1000 | -45030.7 0.00 -44966.5 0.00003 -44956.1 0.67 -44955.7

Table 6.1: Application of the log-likelihood ratio test to a finite mixture fitting experiment shown in Fig. 6.3.
Rows mark different sample sizes (with n marking the number of grains) drawn from Scenario II. Columns
labeled as Ly show the log-likelihood of different model fits, where N marks the number of components.
Columns labeled as p(x3) list the p-values of a Chi-square test with two degrees of freedom, which can (but
in this case should not) be used to assess whether it is statistically justified to increment the number of
fitting parameters (N) by one.

(a) (n=10)
Central age = 150 = 14 Ma (10)

(b) n=100)
Central age = 144.3 + 4.4 Ma (10)

(c) (n=1000)
Central age = 150.2 = 1.6 Ma (10)

) ) 500Ma ) ) 500Ma ) ) 500Ma
Dispersion = 14 % 400 Dispersion = 17 % 400 Dispersion = 21 % 400
p(y*) = 0.18 350 p(x*) = 0.00 350 p(x*) = 0.00 350

300 300
250 250
2
} ° 200 200
o
o
0 N 150 150
j 3 % )
2 ° 100 - S 100
FE
. Peak 1: 94.2+8.8Ma (8.5%4.5%)
50Ma Peak 1: 135.5+10Ma (86+20%) 50Ma Peak 2: 151.5+4.7Ma (83.5+3.6%) 50Ma
Peak 2: 228283Ma (14:+20%) Peak 3: 257+26Ma (8+5.8%)
oft | Bl 27 24% oft | B4 26 21% ot 35 26 20%
I T T T T 1 I T T T T 1 I T T T T 1
tlo 0 1 2 3 4 5 tlo 0 1 2 3 4 5 tlo 0 1 2 3 4 5

Fig. 6.3: Application of finite mixture modelling to the continuous mixture of Scenario II (Fig. 6.2). In-
creasing sample size from left (a) to right (c) provides statistical justification to fit more components using
the log-likelihood ratio approach of Table 6.1. Note that the age of the youngest age component gets pro-
gressively younger with increasing sample size, from 150 Ma for sample (a) to 94 Ma for sample (c), and is
therefore not a reliable estimator of the minimum age. p(x?) marks the p-value of the Chi-square test for
age homogeneity and not the log-likelihood ratio tests of Table 6.1.

et al. 1986). If the compositional effects (notably the Cl/F ratio, Green et al. 1986) are well characterised,
then the measured length distribution of horizontally confined fission tracks can be used to reconstruct the
thermal history of a sample. Laboratory experiments show that the thermal annealing of fission tracks in
apatite obeys a so-called ‘fanning Arrhenius’ relationship, in which the degree of shortening logarithmically
depends on both the amount and duration of heating (Green et al. 1985, Laslett et al. 1987, Laslett and
Galbraith 1996, Ketcham et al. 1999, 2007):

N In(t) — In(¢.)

In (1 — \/L/LO) =cp— clm

where L, and L are the initial and measured track length, t and T are time and absolute temperature, re-
spectively, and cg, c1, A, t. and T, are fitting parameters (Laslett and Galbraith 1996, Ketcham et al. 1999).
Using these laboratory results, thermal history reconstructions are a two-step process. First, a large number
of random thermal histories are generated, and for each of these the fanning Arrhenius relationship is used
to predict the corresponding FT length distribution (Corrigan 1991, Lutz and Omar 1991, Gallagher 1995,
Willett 1997, Ketcham et al. 2000, Ketcham 2005, Gallagher 2012). Then, these ‘forward model’ predictions
are compared with the measured values and the ‘best’ matches are retained for geological interpretation. All
the ‘inverse modelling’ software that has been developed over the years for the purpose of thermal history
reconstructions essentially follows this same recipe. The most important difference between these algorithms
is how they assess the goodness of fit and decide which candidate t-T paths to retain and which to reject.

(6.24)

12



One class of software, including the popular HeFTy program and its predecessor AFTSolve (Ketcham et al.
2000, Ketcham 2005), use the p-value of formalised hypothesis tests like the Chi-square test described in the
previous Sections, to decide whether the measured FT length distribution is a ‘good’ (p>0.5), ‘acceptable’
(0.5>p>0.05) or ‘poor’ (p<0.05) fit. The problem with this approach is that, due to the dependence of
p-values on sample size, it inevitably breaks down for large datasets. This is because the statistical ‘power’
of statistical hypothesis test to resolve even the tiniest disagreement between the measured and the predicted
length distribution, monotonically increases with increasing sample size (Vermeesch and Tian 2014).

A second class of inverse modelling algorithms (including QTQt, Gallagher 2012) does not employ for-
malised hypothesis tests or p-values, but aims to extract the ‘most likely’ thermal history models among all
possible t-T paths (Gallagher 1995, Willett 1997). These methods do not ‘break down’ when they are applied
to large datasets. On the contrary, large datasets are ‘rewarded’ in the form of tighter ‘credibility intervals’
and higher resolution t-T paths. Furthermore, they are easily extended to multi-sample and multi-method
datasets. However, with great power also comes great responsibility. Vermeesch and Tian (2014) show that
QTQt always produces a ‘best fitting’ thermal history even for physically impossible datasets. To avoid this
potential problem, it is of paramount importance that the model predictions are shown alongside the FT
data (Gallagher 2012, 2016, Vermeesch and Tian 2014).

6.7 LA-ICP-MS based FT dating

The EDM outlined in Sect. 6.2 continues to be the most widely used analytical protocol in FT dating.
However, over the past decade, an increasing number of laboratories have abandoned it and switched to
LA-ICP-MS as a means of determining the uranium concentration of datable minerals, thus reducing sample
turnover time and removing the need to handle radioactive materials (Hasebe et al. 2004, 2009, Chew and
Donelick 2012, Soares et al. 2014, Abdullin et al. 2016, Vermeesch 2017). The statistical analysis of ICP-
MS based FT data is less straightforward and less well developed than that of the EDM. As described in
Sect. 6.2, the latter is based on simple ratios of Poisson variables, and forms the basis of a large edifice
of statistical methods which cannot be directly applied to ICP-MS based data. This Section provides an
attempt to address this issue.

6.7.1 Age equation
The FT age equation for ICP-MS based data is based on Eq. 6.1:

izt 1+’\—DAL (6.25)
Ar [UJASR g

where N is the number of spontaneous tracks counted over an area Ag, q is an ‘efficiency factor’ (~0.93
for apatite and ~1 for zircon, Iwano and Danhara 1998, Enkelmann and Jonckheere 2003, Jonckheere 2003,
Soares et al. 2013) and [U] is the 238U-concentration (in atoms per unit volume) measured by LA-ICP-MS.
Eq. 6.25 requires an explicit value for Ay and assumes that the etchable range (R) is accurately known
(Soares et al. 2014). Alternatively, these factors may be folded into a calibration factor akin to the EDM
(Eq. 6.4):

~ 1 1. » N;
t Py In (1 + 2/\DCAs [U’]) (6.26)

in which ¢ is determined by analysing a standard of known FT age (Hasebe et al. 2004). Note that,
in contrast with the ‘absolute’ dating method of Eq. 6.25, the (-calibration method of Eq. 6.26 allows [U]
to be expressed in any concentration units (e.g., ppm or wt% of total U) or could even be replaced with
the measured U/Ca-, U/Si- or U/Zr-ratios produced by the ICP-MS instrument. The standard error of the
estimated age is given by
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for the (-calibration approach (Eq. 6.26), where S[U] is the standard error of the uranium concentration
measurement (or the U/Ca-ratio measurement, say), which can be estimated using two alternative approaches

as discussed in Sect. 6.7.2. Eq. 6.27 can also be applied to the ‘absolute’ dating method (Eq. 6.25) by simply
setting s[¢]/¢ = 0.

6.7.2 Error propagation of LA-ICP-MS based uranium concentrations

Uranium-bearing minerals such as apatite and zircon often exhibit compositional zoning, which must either
be removed or quantified in order to ensure unbiased ages.

1. The effect of compositional zoning can be removed by covering the entire counting area with one large
laser spot (Soares et al. 2014) or a raster (Hasebe et al. 2004). s[U] is then simply given by the
analytical uncertainty of the LA-ICP-MS instrument, which typically is an order of magnitude lower
than the standard errors of induced track counts in the EDM.

2. Alternatively, the uranium-heterogeneity can be quantified by analysing multiple spots per analysed
grain (Hasebe et al. 2009). In this case, it is commonly found that the variance of the different
uranium-measurements within each grain far exceeds the formal analytical uncertainty of each spot
measurement. The following paragraphs will outline a method to measure that dispersion, even if some
of the grains in a sample were only visited by the laser once.

The true statistical distribution of the U-concentrations within in each grain is unknown but is likely to
be log-normal:

[Uji] ~ N (s, 07) (6.28)

where Ujy, is the k*™ (out of n;) uranium concentration measurements, and y; and o7 are the (unknown)
mean and variance of a Normal distribution. Unfortunately it is difficult to accurately estimate these two
parameters from just a handful of spot measurements, and it is downright impossible if n; = 1. This problem
requires a simplifying assumption such as o; = o V j. In that case we can estimate the parameters of Eq.
6.28 as follows:

fij =Y _ U]/, (6.29)
k=1
and

n

6% = i i (ln[Ujk] - ﬂj)z/Z(na‘ —-1). (6.30)

j=1k=1
The (geometric) mean uranium concentration and standard error of the j'! grain are then given by

Uj = explji;] (6.31)

and

S[Uj] = Uj(} (632)

which may be directly plugged into Egs. 6.25-6.27 to calculate FT ages and uncertainties. Note that

this procedure ignores the analytical uncertainty of the individual U-measurements. A more sophisticated

approach that combines the analytical uncertainties of the U-measurements with the dispersion of multiple
spot measurements is provided by Vermeesch (2017).

14



6.7.3 Zero track counts

In contrast with the EDM, ICP-MS based FT data do not offer an easy way to deal with zero track counts.
One pragmatic solution to this problem is to approximate the ICP-MS based uranium concentration mea-
surement with an ‘equivalent induced track density’, using the following linear transformation:

Nij = pjAs;|Uj) (6.33)

where Ag; is the area over which the spontaneous tracks of the j* grain have been counted and p; plays
a similar role as pg in Eq. 6.2. From the requirement that the variance of a Poisson-distributed variable
equals its mean (Sect. 6.2), it follows that:

Nij = p} A%;s[U;)? (6.34)

from which it is easy to determine p;. The analytical uncertainty for the jt" single grain age is then given
by:

slt;] = 1; lej + ; + (‘?) (6.35)

where N,; indicates the number of spontaneous tracks measured in the j** grain, and s[¢]/¢ = 0 for

the ‘absolute’ dating approach (Eq. 6.25). The zero track problem can then be solved using the methods
mentioned in Sect. 6.2.

6.7.4 Plots and models
To plot ICP-MS based fission track data on a radial plot, we can replace Eqs. 6.12 and 6.13 with

zj = In(ty), (6.36)

s (s
and s; = (é) +<U> —I—E (6.37)

respectively (Galbraith 2010a). Alternatively, a square root transformation may be more appropriate for
young and/or U-poor samples (Galbraith, pers. commun.):

Zj = tj, (638)

and s; = s[i;] / <2\/E) (6.39)

The Binomial Likelihood function of Sect. 6.4.2 may be replaced with an alternative form assuming
Normal errors. Thus, Eq. 6.15 becomes:

L(0) = Zln [N (z0,07)] (6.40)

where N (alb, ¢) stands for “the probability density of observing a value a from a Normal distribution
with mean b and variance c¢”, z; is defined by Eq. 6.36 and 0; is given by

o} = st/ (6.41)
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The Chi-square statistic (Eq. 6.16) may be redefined as

n n

=3 (/o) = | D z/0} Z 1/0% (6.42)

j=1 j=1

(Galbraith 2010a). Finally, the random effects model of Eq. 6.18 can be replaced with:

L(p,0?) = Zln (N(zjlp, 0% + 07?)] (6.43)
j=1

Eqgs. 6.40 and 6.43 can be readily plugged into Eqs. 6.20, 6.22 and 6.23 to constrain finite mixtures,
continuous mixtures and minimum age models for ICP-MS based data, respectively.
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