32 research outputs found
Fortunella margarita Transcriptional Reprogramming Triggered by Xanthomonas citri subsp. citri
<p>Abstract</p> <p>Background</p> <p>Citrus canker disease caused by the bacterial pathogen <it>Xanthomonas citri </it>subsp. <it>citri (</it>Xcc) <it>has </it>become endemic in areas where high temperature, rain, humidity, and windy conditions provide a favourable environment for the dissemination of the bacterium. Xcc is pathogenic on many commercial citrus varieties but appears to elicit an incompatible reaction on the citrus relative <it>Fortunella margarita </it>Swing (kumquat), in the form of a very distinct delayed necrotic response. We have developed subtractive libraries enriched in sequences expressed in kumquat leaves during both early and late stages of the disease. The isolated differentially expressed transcripts were subsequently sequenced. Our results demonstrate how the use of microarray expression profiling can help assign roles to previously uncharacterized genes and elucidate plant pathogenesis-response related mechanisms. This can be considered to be a case study in a citrus relative where high throughput technologies were utilized to understand defence mechanisms in <it>Fortunella </it>and citrus at the molecular level.</p> <p>Results</p> <p><b>cDNAs from sequenced kumquat libraries (ESTs) made from subtracted RNA populations, healthy vs. infected, were used to make this microarray</b>. Of 2054 selected genes on a customized array, 317 were differentially expressed (P < 0.05) in Xcc challenged kumquat plants compared to mock-inoculated ones. This study identified components of the incompatible interaction such as reactive oxygen species (ROS) and programmed cell death (PCD). Common defence mechanisms and a number of resistance genes were also identified. In addition, there were a considerable number of differentially regulated genes that had no homologues in the databases. This could be an indication of either a specialized set of genes employed by kumquat in response to canker disease or new defence mechanisms in citrus.</p> <p>Conclusion</p> <p>Functional categorization of kumquat Xcc-responsive genes revealed an enhanced defence-related metabolism as well as a number of resistant response-specific genes in the kumquat transcriptome in response to Xcc inoculation. Gene expression profile(s) were analyzed to assemble a comprehensive and inclusive image of the molecular interaction in the kumquat/Xcc system. This was done in order to elucidate molecular mechanisms associated with the development of the hypersensitive response phenotype in kumquat leaves. These data will be used to perform comparisons among citrus species to evaluate means to enhance the host immune responses against bacterial diseases.</p
Transcriptome Profiling of Citrus Fruit Response to Huanglongbing Disease
Huanglongbing (HLB) or “citrus greening” is the most destructive citrus disease worldwide. In this work, we studied host responses of citrus to infection with Candidatus Liberibacter asiaticus (CaLas) using next-generation sequencing technologies. A deep mRNA profile was obtained from peel of healthy and HLB-affected fruit. It was followed by pathway and protein-protein network analysis and quantitative real time PCR analysis of highly regulated genes. We identified differentially regulated pathways and constructed networks that provide a deep insight into the metabolism of affected fruit. Data mining revealed that HLB enhanced transcription of genes involved in the light reactions of photosynthesis and in ATP synthesis. Activation of protein degradation and misfolding processes were observed at the transcriptomic level. Transcripts for heat shock proteins were down-regulated at all disease stages, resulting in further protein misfolding. HLB strongly affected pathways involved in source-sink communication, including sucrose and starch metabolism and hormone synthesis and signaling. Transcription of several genes involved in the synthesis and signal transduction of cytokinins and gibberellins was repressed while that of genes involved in ethylene pathways was induced. CaLas infection triggered a response via both the salicylic acid and jasmonic acid pathways and increased the transcript abundance of several members of the WRKY family of transcription factors. Findings focused on the fruit provide valuable insight to understanding the mechanisms of the HLB-induced fruit disorder and eventually developing methods based on small molecule applications to mitigate its devastating effects on fruit production
Analysis of Physeal Fractures from the United States National Trauma Data Bank
Background: Pediatric long-bone physeal fractures can lead to growth deformities. Previous studies have reported that physeal fractures make up 18–30% of total fractures. This study aimed to characterize physeal fractures with respect to sex, age, anatomic location, and Salter–Harris (SH) classification from a current multicenter national database. Methods: A retrospective cohort study was performed using the 2016 United States National Trauma Data Bank (NTDB). Patients ≤ 18 years of age with a fracture of the humerus, radius, ulna, femur, tibia, or fibula were included. Results: The NTDB captured 132,018 patients and 58,015 total fractures. Physeal fractures made up 5.7% (3291) of all long-bone fractures, with males accounting for 71.0% (2338). Lower extremity physeal injuries comprised 58.6% (1929) of all physeal fractures. The most common site of physeal injury was the tibia comprising 31.8% (1047), 73.9% (774) of which were distal tibia fractures. Physeal fractures were greatest at 11 years of age for females and 14 years of age for males. Most fractures were SH Type II fractures. Discussion and Conclusions: Our analysis indicates that 5.7% of pediatric long-bone fractures involved the physis, with the distal tibia being the most common. These findings suggest a lower incidence of physeal fractures than previous studies and warrant further investigation