903 research outputs found
Use of computer modeling to investigate a dynamic interaction problem in the Skylab TACS quad-valve package
A valve opening-response problem encountered during development of a control valve for the Skylab thruster attitude control system (TACS) is described. The problem involved effects of dynamic interaction among valves in the quad-redundant valve package. Also described is a detailed computer simulation of the quad-valve package which was helpful in resolving the problem
Updated, expanded, fluid properties handbook
Revised handbook presents quantitative data, in the form of graphs and charts, pertaining to thermodynamic properties of specific cryogenic fluids and several metals. References to sources of data are cited
California Methanol Assessment; Volume II, Technical Report
A joint effort by the Jet Propulsion Laboratory and the California Institute of Technology Division of Chemistry and Chemical Engineering has brought together sponsors from both the public and private sectors for an analysis of the prospects for methanol use as a fuel in California, primarily for the transportation and stationary application sectors. Increasing optimism in 1982 for a slower rise in oil prices and a more realistic understanding of the costs of methanol production have had a negative effect on methanol viability in the near term (before the year 2000). Methanol was determined to have some promise in the transportation sector, but is not forecasted for large-scale use until beyond the year 2000. Similarly, while alternative use of methanol can have a positive effect on air quality (reducing NOx, SOx, and other emissions), a best case estimate is for less than 4% reduction in peak ozone by 2000 at realistic neat methanol vehicle adoption rates. Methanol is not likely to be a viable fuel in the stationary application sector because it cannot compete economically with conventional fuels except in very limited cases. On the production end, it was determined that methanol produced from natural gas will continue to dominate supply options through the year 2000, and the present and planned industry capacity is somewhat in excess of all projected needs. Nonsubsidized coal-based methanol cannot compete with conventional feedstocks using current technology, but coal-based methanol has promise in the long term (after the year 2000), providing that industry is willing to take the technical and market risks and that government agencies will help facilitate the environment for methanol.
Given that the prospects for viable major markets (stationary applications and neat fuel in passenger cars) are unlikely in the 1980s and early 1990s, the next steps for methanol are in further experimentation and research of production and utilization technologies, expanded use as an octane enhancer, and selected fleet implementation. In the view of the study, it is not advantageous at this time to establish policies within California that attempt to expand methanol use rapidly as a neat fuel for passenger cars or to induce electric utility use of methanol on a widespread basis
California methanol assessment. Volume 1: Summary report
The near term methanol industry, the competitive environment, long term methanol market, the transition period, air quality impacts of methanol, roles of the public and private sectors are considered
Fluid properties handbook
Single source compilation handbook, has been made of the most accurate available physical property data pertaining to helium, hydrogen, oxygen, and nitrogen
Reinstated episodic context guides sampling-based decisions for reward.
How does experience inform decisions? In episodic sampling, decisions are guided by a few episodic memories of past choices. This process can yield choice patterns similar to model-free reinforcement learning; however, samples can vary from trial to trial, causing decisions to vary. Here we show that context retrieved during episodic sampling can cause choice behavior to deviate sharply from the predictions of reinforcement learning. Specifically, we show that, when a given memory is sampled, choices (in the present) are influenced by the properties of other decisions made in the same context as the sampled event. This effect is mediated by fMRI measures of context retrieval on each trial, suggesting a mechanism whereby cues trigger retrieval of context, which then triggers retrieval of other decisions from that context. This result establishes a new avenue by which experience can guide choice and, as such, has broad implications for the study of decisions
Generation of optimal trajectories for Earth hybrid pole sitters
A pole-sitter orbit is a closed path that is constantly above one of the Earth's poles, by means of continuous low thrust. This work proposes to hybridize solar sail propulsion and solar electric propulsion (SEP) on the same spacecraft, to enable such a pole-sitter orbit. Locally-optimal control laws are found with a semi-analytical inverse method, starting from a trajectory that satisfies the pole-sitter condition in the Sun-Earth circular restricted three-body problem. These solutions are subsequently used as first guess to find optimal orbits, using a direct method based on pseudospectral transcription. The orbital dynamics of both the pure SEP case and the hybrid case are investigated and compared. It is found that the hybrid spacecraft allows savings on propellant mass fraction. Finally, it is shown that for sufficiently long missions, a hybrid pole-sitter, based on mid-term technology, enables a consistent reduction in the launch mass for a given payload, with respect to a pure SEP spacecraft
Systems design of a hybrid sail pole-sitter
This paper presents the preliminary systems design of a pole-sitter. This is a spacecraft that hovers over an Earth pole, creating a platform for full hemispheric observation of the polar regions, as well as direct-link telecommunications. To provide the necessary thrust, a hybrid propulsion system combines a solar sail with a more mature solar electric propulsion (SEP) thruster. Previous work by the authors showed that the combination of the two allows lower propellant mass fractions, at the cost of increased system complexity. This paper compares the pure SEP spacecraft with the hybrid spacecraft in terms of the launch mass necessary to deliver a certain payload for a given mission duration. A mass budget is proposed, and the conditions investigated under which the hybrid sail saves on the initial spacecraft initial mass. It is found that the hybrid spacecraft with near- to mid-term sail technology has a lower initial mass than the SEP case if the mission duration is 7 years or more, with greater benefits for longer duration missions. The hybrid spacecraft with far-term sail technology outperforms the pure SEP case even for short missions
Statistical Eigenmode Transmission over Jointly-Correlated MIMO Channels
We investigate MIMO eigenmode transmission using statistical channel state
information at the transmitter. We consider a general jointly-correlated MIMO
channel model, which does not require separable spatial correlations at the
transmitter and receiver. For this model, we first derive a closed-form tight
upper bound for the ergodic capacity, which reveals a simple and interesting
relationship in terms of the matrix permanent of the eigenmode channel coupling
matrix and embraces many existing results in the literature as special cases.
Based on this closed-form and tractable upper bound expression, we then employ
convex optimization techniques to develop low-complexity power allocation
solutions involving only the channel statistics. Necessary and sufficient
optimality conditions are derived, from which we develop an iterative
water-filling algorithm with guaranteed convergence. Simulations demonstrate
the tightness of the capacity upper bound and the near-optimal performance of
the proposed low-complexity transmitter optimization approach.Comment: 32 pages, 6 figures, to appear in IEEE Transactions on Information
Theor
Spacecraft observations and analytic theory of crescent-shaped electron distributions in asymmetric magnetic reconnection
Supported by a kinetic simulation, we derive an exclusion energy parameter
providing a lower kinetic energy bound for an electron to cross
from one inflow region to the other during magnetic reconnection. As by a
Maxwell Demon, only high energy electrons are permitted to cross the inner
reconnection region, setting the electron distribution function observed along
the low density side separatrix during asymmetric reconnection. The analytic
model accounts for the two distinct flavors of crescent-shaped electron
distributions observed by spacecraft in a thin boundary layer along the low
density separatrix.Comment: 6 pages, 3 figure
- …