265 research outputs found

    Systematically Asymmetric Heliospheric Magnetic Field: Evidence for a Quadrupole Mode and Non-axisymmetry with Polarity Flip-flops

    Full text link
    Recent studies of the heliospheric magnetic field (HMF) have detected interesting, systematic hemispherical and longitudinal asymmetries which have a profound significance for the understanding of solar magnetic fields. The in situ HMF measurements since 1960s show that the heliospheric current sheet (HCS) is systematically shifted (coned) southward during solar minimum times, leading to the concept of a bashful ballerina. While temporary shifts can be considerably larger, the average HCS shift (coning) angle is a few degrees, less than the 7.27.2^{\circ} tilt of the solar rotation axis. Recent solar observations during the last two solar cycles verify these results and show that the magnetic areas in the northern solar hemisphere are larger and their intensity weaker than in the south during long intervals in the late declining to minimum phase. The multipole expansion reveals a strong quadrupole term which is oppositely directed to the dipole term. These results imply that the Sun has a symmetric quadrupole S0 dynamo mode that oscillates in phase with the dominant dipole A0 mode. Moreover, the heliospheric magnetic field has a strong tendency to produce solar tilts that are roughly opposite in longitudinal phase. This implies is a systematic longitudinal asymmetry and leads to a "flip-flop" type behaviour in the dominant HMF sector whose period is about 3.2 years. This agrees very well with the similar flip-flop period found recently in sunspots, as well as with the observed ratio of three between the activity cycle period and the flip-flop period of sun-like stars. Accordingly, these results require that the solar dynamo includes three modes, A0, S0 and a non-axisymmetric mode. Obviously, these results have a great impact on solar modelling.Comment: 13 pages, 4 figures, Solar Physics, Topical Issue of Space Climate Symposium, in pres

    The Effect of Conservation Agriculture and Environmental Factors on CO2 Emissions in a Rainfed Crop Rotation

    Get PDF
    There are many factors involved in the release of CO2 emissions from the soil, such as the type of soil management, the soil organic matter, the soil temperature and moisture conditions, crop phenological stage, weather conditions, residue management, among others. This study aimed to analyse the influence of these factors and their interactions to determine the emissions by evaluating the environmental cost expressed as the kg of CO2 emitted per kg of production in each of the crops and seasons studied. For this purpose, a field trial was conducted on a farm in Seville (Spain). The study compared Conservation Agriculture, including its three principles (no-tillage, permanent soil cover, and crop rotations), with conventional tillage. Carbon dioxide emissions measured across the four seasons of the experiment showed an increase strongly influenced by rainfall during the vegetative period, in both soil management systems. The results of this study confirm that extreme events of precipitation away from the normal means, result in episodes of high CO2 emissions into the atmosphere. This is very important because one of the consequences for future scenarios of climate change is precisely the increase of extreme episodes of precipitation and periods extremely dry, depending on the area considered. The total of emission values of the different plots of the study show how the soils under the conventional system (tillage) have been emitting 67% more than soils under the conventional agriculture system during the 2010/11 campaign and 25% for the last campaign where the most appreciable differences are observed

    Study of Distribution and Asymmetry of Solar Active Prominences During Solar Cycle 23

    Full text link
    In this paper we present the results of a study of the spatial distribution and asymmetry of solar active prominences (SAP) for the period 1996-2007 (solar cycle 23). For more meaningful statistical analysis we have analysed the distribution and asymmetry of SAP in two subdivisions viz. Group1 (ADF, APR, DSF, CRN, CAP) and Group2 (AFS, ASR, BSD, BSL, DSD, SPY, LPS). The north-south (N-S) latitudinal distribution shows that the SAP events are most prolific in the 21-30degree slice in the northern and southern hemispheres and east-west (E-W) longitudinal distribution study shows that the SAP events are most prolific (best visible) in the 81-90degree slice in the eastern and western hemispheres. It has been found that the SAP activity during this cycle is low compared to previous solar cycles. The present study indicates that during the rising phase of the cycle the number of SAP events were roughly equal on the north and south hemispheres. However, activity on the southern hemisphere has been dominant since 1999. Our statistical study shows that the N-S asymmetry is more significant then the E-W asymmetry.Comment: 21 pages 5 figures; Published online; 02 October, 2009; Solar Physics Journa

    Structural basis of the pleiotropic and specific phenotypic consequences of missense mutations in the multifunctional NAD(P)H:quinone oxidoreductase 1 and their pharmacological rescue

    Get PDF
    The multifunctional nature of human flavoproteins is critically linked to their ability to populate multiple conformational states. Ligand binding, post-translational modifications and disease-associated mutations can reshape this functional landscape, although the structure-function relationships of these effects are not well understood. Herein, we characterized the structural and functional consequences of two mutations (the cancer-associated P187S and the phosphomimetic S82D) on different ligation states which are relevant to flavin binding, intracellular stability and catalysis of the disease-associated NQO1 flavoprotein. We found that these mutations affected the stability locally and their effects propagated differently through the protein structure depending both on the nature of the mutation and the ligand bound, showing directional preference from the mutated site and leading to specific phenotypic manifestations in different functional traits (FAD binding, catalysis and inhibition, intracellular stability and pharmacological response to ligands). Our study thus supports that pleitropic effects of disease-causing mutations and phosphorylation events on human flavoproteins may be caused by long-range structural propagation of stability effects to different functional sites that depend on the ligation-state and site-specific perturbations. Our approach can be of general application to investigate these pleiotropic effects at the flavoproteome scale in the absence of high-resolution structural models. © 202

    Inheritance of growth habit detected by genetic linkage analysis using microsatellites in the common bean (Phaseolus vulgaris L.).

    Get PDF
    The genetic linkage map for the common bean (Phaseolus vulgaris L.) is a valuable tool for breeding programs. Breeders provide new cultivars that meet the requirements of farmers and consumers, such as seed color, seed size, maturity, and growth habit. A genetic study was conducted to examine the genetics behind certain qualitative traits. Growth habit is usually described as a recessive trait inherited by a single gene, and there is no consensus about the position of the locus. The aim of this study was to develop a new genetic linkage map using genic and genomic microsatellite markers and three morphological traits: growth habit, flower color, and pod tip shape. A mapping population consisting of 380 recombinant F10 lines was generated from IAC-UNA × CAL143. A total of 871 microsatellites were screened for polymorphisms among the parents, and a linkage map was obtained with 198 mapped microsatellites. The total map length was 1865.9 cM, and the average distance between markers was 9.4 cM. Flower color and pod tip shape were mapped and segregated at Mendelian ratios, as expected. The segregation ratio and linkage data analyses indicated that the determinacy growth habit was inherited as two independent and dominant genes, and a genetic model is proposed for this trait

    Making Climate Change Mitigation and Adaptability Real in Africa with Conservation Agriculture

    Get PDF
    In this report, the authors have gathered essential information on how the agricultural sector can respond to climate change through Conservation Agriculture (CA). This document aims to serve as a basis for decision-making based on science and agricultural experimentation in Africa

    Multidisciplinary approach to cylindrical anisotropic metamaterials

    Full text link
    Anisotropic characteristics of cylindrically corrugated microstructures are analyzed in terms of their acoustic and electromagnetic (EM) behavior paying special attention to their differences and similarities. A simple analytical model has been developed using effective medium theory to understand the anisotropic features of both types of waves in terms of radial and angular components of the wave propagation velocity. The anisotropic constituent parameters have been obtained by measuring the resonances of cylindrical cavities, as well as from numerical simulations. This permits one to characterize propagation of acoustic and EM waves and to compare the fundamental anisotropic features generated by the corrugated effective medium. Anisotropic coefficients match closely in both physics fields but other relevant parameters show significant differences in the behavior of both types of waves. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.The authors acknowledge financial support from the Spanish MICINN (TEC 2010-19751 and Consolider CSD2008-00066) and from the US Office of Naval Research (N000140910554). DT also acknowledges support from the program 'Campus de Excelencia Internacional 2010 UPV'.Carbonell Olivares, J.; Torrent Martí, D.; Diaz Rubio, A.; Sánchez-Dehesa Moreno-Cid, J. (2011). Multidisciplinary approach to cylindrical anisotropic metamaterials. New Journal of Physics. 13:103034-103034. doi:10.1088/1367-2630/13/10/103034S10303410303413Engheta, N., & Ziolkowski, R. W. (Eds.). (2006). Metamaterials. doi:10.1002/0471784192Pendry, J. B. (2006). Controlling Electromagnetic Fields. Science, 312(5781), 1780-1782. doi:10.1126/science.1125907Pendry, J. B. (2000). Negative Refraction Makes a Perfect Lens. Physical Review Letters, 85(18), 3966-3969. doi:10.1103/physrevlett.85.3966Schurig, D., Mock, J. J., Justice, B. J., Cummer, S. A., Pendry, J. B., Starr, A. F., & Smith, D. R. (2006). Metamaterial Electromagnetic Cloak at Microwave Frequencies. Science, 314(5801), 977-980. doi:10.1126/science.1133628Torrent, D., & Sánchez-Dehesa, J. (2009). Radial Wave Crystals: Radially Periodic Structures from Anisotropic Metamaterials for Engineering Acoustic or Electromagnetic Waves. Physical Review Letters, 103(6). doi:10.1103/physrevlett.103.064301Jacob, Z., Alekseyev, L. V., & Narimanov, E. (2006). Optical Hyperlens: Far-field imaging beyond the diffraction limit. Optics Express, 14(18), 8247. doi:10.1364/oe.14.008247Bradley, C. E. (1994). Time harmonic acoustic Bloch wave propagation in periodic waveguides. Part I. Theory. The Journal of the Acoustical Society of America, 96(3), 1844-1853. doi:10.1121/1.410196Bradley, C. E. (1994). Time harmonic acoustic Bloch wave propagation in periodic waveguides. Part II. Experiment. The Journal of the Acoustical Society of America, 96(3), 1854-1862. doi:10.1121/1.410197Schoenberg, M., & Sen, P. N. (1983). Properties of a periodically stratified acoustic half‐space and its relation to a Biot fluid. The Journal of the Acoustical Society of America, 73(1), 61-67. doi:10.1121/1.388724Peng, L., Ran, L., & Mortensen, N. A. (2010). Achieving anisotropy in metamaterials made of dielectric cylindrical rods. Applied Physics Letters, 96(24), 241108. doi:10.1063/1.3453446Carbonell, J., Cervera, F., Sánchez-Dehesa, J., Arriaga, J., Gumen, L., & Krokhin, A. (2010). Homogenization of two-dimensional anisotropic dissipative photonic crystal. Applied Physics Letters, 97(23), 231122. doi:10.1063/1.3526381Valero-Nogueira, A., Alfonso, E., Herranz, J. I., & Baquero, M. (2007). Planar slot-array antenna fed by an oversized quasi-TEM waveguide. Microwave and Optical Technology Letters, 49(8), 1875-1877. doi:10.1002/mop.22586Ni, Y., Gao, L., & Qiu, C.-W. (2010). Achieving Invisibility of Homogeneous Cylindrically Anisotropic Cylinders. Plasmonics, 5(3), 251-258. doi:10.1007/s11468-010-9145-8Huang, Y., Feng, Y., & Jiang, T. (2007). Electromagnetic cloaking by layered structure of homogeneous isotropic materials. Optics Express, 15(18), 11133. doi:10.1364/oe.15.011133Elliott, R. (1954). On the theory of corrugated plane surfaces. Transactions of the IRE Professional Group on Antennas and Propagation, 2(2), 71-81. doi:10.1109/t-ap.1954.27975Goubau, G. (1950). Surface Waves and Their Application to Transmission Lines. Journal of Applied Physics, 21(11), 1119-1128. doi:10.1063/1.1699553Wang, B., Jin, Y., & He, S. (2008). Design of subwavelength corrugated metal waveguides for slow waves at terahertz frequencies. Applied Optics, 47(21), 3694. doi:10.1364/ao.47.003694Kildal, P.-S. (1990). Artificially soft and hard surfaces in electromagnetics. IEEE Transactions on Antennas and Propagation, 38(10), 1537-1544. doi:10.1109/8.59765Giovannini, L., Nizzoli, F., & Marvin, A. M. (1992). Theory of surface acoustic phonon normal modes and light scattering cross section in a periodically corrugated surface. Physical Review Letters, 69(10), 1572-1575. doi:10.1103/physrevlett.69.1572Lakhtakia, A., Varadan, V. K., & Varadan, V. V. (1985). On the acoustic response of a deeply corrugated periodic surface— A hybrid T‐matrix approach. The Journal of the Acoustical Society of America, 78(6), 2100-2104. doi:10.1121/1.392669Kundu, T., Banerjee, S., & Jata, K. V. (2006). An experimental investigation of guided wave propagation in corrugated plates showing stop bands and pass bands. The Journal of the Acoustical Society of America, 120(3), 1217-1226. doi:10.1121/1.2221534Torrent, D., & Sánchez-Dehesa, J. (2010). Anisotropic Mass Density by Radially Periodic Fluid Structures. Physical Review Letters, 105(17). doi:10.1103/physrevlett.105.174301Chew, W. C. (1999). Waves and Fields in Inhomogenous Media. doi:10.1109/9780470547052Smith, D. R., Vier, D. C., Koschny, T., & Soukoulis, C. M. (2005). Electromagnetic parameter retrieval from inhomogeneous metamaterials. Physical Review E, 71(3). doi:10.1103/physreve.71.036617Fokin, V., Ambati, M., Sun, C., & Zhang, X. (2007). Method for retrieving effective properties of locally resonant acoustic metamaterials. Physical Review B, 76(14). doi:10.1103/physrevb.76.144302Marcuvitz, N. (1986). Waveguide Handbook. doi:10.1049/pbew021

    Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour

    Full text link
    [EN] Green composites made of polylactide (PLA) filled with almond shell flour (ASF) at a constant weight content of 25¿wt.-% were manufactured by injection molding. In order to increase the interfacial adhesion between the biopolymer and the lignocellulosic fillers, three different compatibilizers were tested, namely multi-functional epoxy-based styrene-acrylic oligomer (ESAO), aromatic carbodiimide (AC), and maleinized linseed oil (MLO). The effect of each compatibilizer on the thermal, mechanical, and thermomechanical properties and water uptake of the injection-molded PLA/ASF pieces was analyzed. The obtained results indicated that all the here-studied compatibilizers had a positive influence on both the thermal stability and the mechanical and thermomechanical performance of the green composite pieces but low impact on their water uptake profile. In addition, the morphological analysis performed at the fracture surfaces of the green composite pieces revealed that the filler¿matrix gap was substantially reduced. Among the tested compatibilizers, ESAO and MLO yielded the highest performance in terms of mechanical strength and ductility, respectively. In the case of MLO, it also offers the advantage of being a plant-derived additive so that its application in green composites positively contributes to the development of sustainable polymer technologies.This research was supported by the Spanish Ministry of Economy and Competitiveness (MINECO) program number MAT2014-59242-C2-1-R and AGL2015-63855-C2-1-R and Generalitat Valenciana (GV) program number GV/2014/008. A. Carbonell-Verdu wants to thank Universitat Politecnica de Valencia (UPV) for his FPI grant. D. Garcia-Garcia wants to thank the Spanish Ministry of Education, Culture and Sports (MECD) for his FPU grant (FPU13/06011). L. Quiles-Carrillo also wants to thank GV for his FPI grant (ACT/2016/182) and the MECD for his FPU grant (FPU15/03812).Quiles-Carrillo, L.; Montanes, N.; Garcia-Garcia, D.; Carbonell-Verdu, A.; Balart, R.; Torres-Giner, S. (2018). Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Composites Part B Engineering. 147:76-85. https://doi.org/10.1016/j.compositesb.2018.04.017S768514

    Predicting the Amplitude of a Solar Cycle Using the North-South Asymmetry in the Previous Cycle: II. An Improved Prediction for Solar Cycle~24

    Full text link
    Recently, using Greenwich and Solar Optical Observing Network sunspot group data during the period 1874-2006, (Javaraiah, MNRAS, 377, L34, 2007: Paper I), has found that: (1) the sum of the areas of the sunspot groups in 0-10 deg latitude interval of the Sun's northern hemisphere and in the time-interval of -1.35 year to +2.15 year from the time of the preceding minimum of a solar cycle n correlates well (corr. coeff. r=0.947) with the amplitude (maximum of the smoothed monthly sunspot number) of the next cycle n+1. (2) The sum of the areas of the spot groups in 0-10 deg latitude interval of the southern hemisphere and in the time-interval of 1.0 year to 1.75 year just after the time of the maximum of the cycle n correlates very well (r=0.966) with the amplitude of cycle n+1. Using these relations, (1) and (2), the values 112 + or - 13 and 74 + or -10, respectively, were predicted in Paper I for the amplitude of the upcoming cycle 24. Here we found that in case of (1), the north-south asymmetry in the area sum of a cycle n also has a relationship, say (3), with the amplitude of cycle n+1, which is similar to (1) but more statistically significant (r=0.968) like (2). By using (3) it is possible to predict the amplitude of a cycle with a better accuracy by about 13 years in advance, and we get 103 + or -10 for the amplitude of the upcoming cycle 24. However, we found a similar but a more statistically significant (r=0.983) relationship, say (4), by using the sum of the area sum used in (2) and the north-south difference used in (3). By using (4) it is possible to predict the amplitude of a cycle by about 9 years in advance with a high accuracy and we get 87 + or - 7 for the amplitude of cycle 24.Comment: 21 pages, 7 figures, Published in Solar Physics 252, 419-439 (2008
    corecore