2,446 research outputs found
A symmetry analyser for non-destructive Bell state detection using EIT
We describe a method to project photonic two-qubit states onto the symmetric
and antisymmetric subspaces of their Hilbert space. This device utilizes an
ancillary coherent state, together with a weak cross-Kerr non-linearity,
generated, for example, by electromagnetically induced transparency. The
symmetry analyzer is non-destructive, and works for small values of the
cross-Kerr coupling. Furthermore, this device can be used to construct a
non-destructive Bell state detector.Comment: Final published for
The GROUSE project III: Ks-band observations of the thermal emission from WASP-33b
In recent years, day-side emission from about a dozen hot Jupiters has been
detected through ground-based secondary eclipse observations in the
near-infrared. These near-infrared observations are vital for determining the
energy budgets of hot Jupiters, since they probe the planet's spectral energy
distribution near its peak. The aim of this work is to measure the Ks-band
secondary eclipse depth of WASP-33b, the first planet discovered to transit an
A-type star. This planet receives the highest level of irradiation of all
transiting planets discovered to date. Furthermore, its host-star shows
pulsations and is classified as a low-amplitude delta-Scuti. As part of our
GROUnd-based Secondary Eclipse (GROUSE) project we have obtained observations
of two separate secondary eclipses of WASP-33b in the Ks-band using the LIRIS
instrument on the William Herschel Telescope (WHT). The telescope was
significantly defocused to avoid saturation of the detector for this bright
star (K~7.5). To increase the stability and the cadence of the observations,
they were performed in staring mode. We collected a total of 5100 and 6900
frames for the first and the second night respectively, both with an average
cadence of 3.3 seconds. On the second night the eclipse is detected at the
12-sigma level, with a measured eclipse depth of 0.244+0.027-0.020 %. This
eclipse depth corresponds to a brightness temperature of 3270+115-160 K. The
measured brightness temperature on the second night is consistent with the
expected equilibrium temperature for a planet with a very low albedo and a
rapid re-radiation of the absorbed stellar light. For the other night the short
out-of-eclipse baseline prevents good corrections for the stellar pulsations
and systematic effects, which makes this dataset unreliable for eclipse depth
measurements. This demonstrates the need of getting a sufficient out-of-eclipse
baseline.Comment: 12 pages, 10 figures. Accepted for publication in Astronomy and
Astrophysic
Efficient optical quantum information processing
Quantum information offers the promise of being able to perform certain
communication and computation tasks that cannot be done with conventional
information technology (IT). Optical Quantum Information Processing (QIP) holds
particular appeal, since it offers the prospect of communicating and computing
with the same type of qubit. Linear optical techniques have been shown to be
scalable, but the corresponding quantum computing circuits need many auxiliary
resources. Here we present an alternative approach to optical QIP, based on the
use of weak cross-Kerr nonlinearities and homodyne measurements. We show how
this approach provides the fundamental building blocks for highly efficient
non-absorbing single photon number resolving detectors, two qubit parity
detectors, Bell state measurements and finally near deterministic control-not
(CNOT) gates. These are essential QIP devicesComment: Accepted to the Journal of optics B special issue on optical quantum
computation; References update
Detection of water absorption in the day side atmosphere of HD 189733 b using ground-based high-resolution spectroscopy at 3.2 microns
We report a 4.8 sigma detection of water absorption features in the day side
spectrum of the hot Jupiter HD 189733 b. We used high-resolution (R~100,000)
spectra taken at 3.2 microns with CRIRES on the VLT to trace the
radial-velocity shift of the water features in the planet's day side atmosphere
during 5 h of its 2.2 d orbit as it approached secondary eclipse. Despite
considerable telluric contamination in this wavelength regime, we detect the
signal within our uncertainties at the expected combination of systemic
velocity (Vsys=-3 +5-6 km/s) and planet orbital velocity (Kp=154 +14-10 km/s),
and determine a H2O line contrast ratio of (1.3+/-0.2)x10^-3 with respect to
the stellar continuum. We find no evidence of significant absorption or
emission from other carbon-bearing molecules, such as methane, although we do
note a marginal increase in the significance of our detection to 5.1 sigma with
the inclusion of carbon dioxide in our template spectrum. This result
demonstrates that ground-based, high-resolution spectroscopy is suited to
finding not just simple molecules like CO, but also to more complex molecules
like H2O even in highly telluric contaminated regions of the Earth's
transmission spectrum. It is a powerful tool that can be used for conducting an
immediate census of the carbon- and oxygen-bearing molecules in the atmospheres
of giant planets, and will potentially allow the formation and migration
history of these planets to be constrained by the measurement of their
atmospheric C/O ratios.Comment: 5 pages, 4 figures, accepted for publication in MNRAS Letter
From Linear Optical Quantum Computing to Heisenberg-Limited Interferometry
The working principles of linear optical quantum computing are based on
photodetection, namely, projective measurements. The use of photodetection can
provide efficient nonlinear interactions between photons at the single-photon
level, which is technically problematic otherwise. We report an application of
such a technique to prepare quantum correlations as an important resource for
Heisenberg-limited optical interferometry, where the sensitivity of phase
measurements can be improved beyond the usual shot-noise limit. Furthermore,
using such nonlinearities, optical quantum nondemolition measurements can now
be carried out at the single-photon level.Comment: 10 pages, 5 figures; Submitted to a Special Issue of J. Opt. B on
"Fluctuations and Noise in Photonics and Quantum Optics" (Herman Haus
Memorial Issue); v2: minor change
Lorentz invariant intrinsic decoherence
Quantum decoherence can arise due to classical fluctuations in the parameters
which define the dynamics of the system. In this case decoherence, and
complementary noise, is manifest when data from repeated measurement trials are
combined. Recently a number of authors have suggested that fluctuations in the
space-time metric arising from quantum gravity effects would correspond to a
source of intrinsic noise, which would necessarily be accompanied by intrinsic
decoherence. This work extends a previous heuristic modification of
Schr\"{o}dinger dynamics based on discrete time intervals with an intrinsic
uncertainty. The extension uses unital semigroup representations of space and
time translations rather than the more usual unitary representation, and does
the least violence to physically important invariance principles. Physical
consequences include a modification of the uncertainty principle and a
modification of field dispersion relations, in a way consistent with other
modifications suggested by quantum gravity and string theory .Comment: This paper generalises an earlier model published as Phys. Rev. A
vol44, 5401 (1991
Weak nonlinearities: A new route to optical quantum computation
Quantum information processing (QIP) offers the promise of being able to do
things that we cannot do with conventional technology. Here we present a new
route for distributed optical QIP, based on generalized quantum non-demolition
measurements, providing a unified approach for quantum communication and
computing. Interactions between photons are generated using weak
non-linearities and intense laser fields--the use of such fields provides for
robust distribution of quantum information. Our approach requires only a
practical set of resources, and it uses these very efficiently. Thus it
promises to be extremely useful for the first quantum technologies, based on
scarce resources. Furthermore, in the longer term this approach provides both
options and scalability for efficient many-qubit QIP.Comment: 7 Pages, 4 Figure
Search for an exosphere in sodium and calcium in the transmission spectrum of exoplanet 55 Cancri e
[Abridged] The aim of this work is to search for an absorption signal from
exospheric sodium (Na) and singly ionized calcium (Ca) in the optical
transmission spectrum of the hot rocky super-Earth 55 Cancri e. Although the
current best-fitting models to the planet mass and radius require a possible
atmospheric component, uncertainties in the radius exist, making it possible
that 55 Cancri e could be a hot rocky planet without an atmosphere. High
resolution (R110000) time-series spectra of five transits of 55 Cancri e,
obtained with three different telescopes (UVES/VLT, HARPS/ESO 3.6m &
HARPS-N/TNG) were analysed. Targeting the sodium D lines and the calcium H and
K lines, the potential planet exospheric signal was filtered out from the much
stronger stellar and telluric signals, making use of the change of the radial
component of the orbital velocity of the planet over the transit from -57 to
+57 km/sec. Combining all five transit data sets, we detect a signal
potentially associated with sodium in the planet exosphere at a statistical
significance level of 3. Combining the four HARPS transits that cover
the calcium H and K lines, we also find a potential signal from ionized calcium
(4.1 ). Interestingly, this latter signal originates from just one of
the transit measurements - with a 4.9 detection at this epoch.
Unfortunately, due to the low significance of the measured sodium signal and
the potentially variable Ca signal, we estimate the p-values of these
signals to be too high (corresponding to <4) to claim unambiguous
exospheric detections. By comparing the observed signals with artificial
signals injected early in the analysis, the absorption by Na and Ca are
estimated to be at a level of approximately 2.3 and 7.0 respectively, relative to the stellar spectrum.Comment: 15 pages, 8 figures, submission updated after English language
editing, submission updated to correct a mistaken cross-reference noticed in
A&A proo
Recommended from our members
Designing theoretically-informed implementation interventions
Clinical and health services research is continually producing new findings that may contribute to effective and efficient patient care. However, the transfer of research findings into practice is unpredictable and can be a slow and haphazard process. Ideally, the choice of implementation strategies would be based upon evidence from randomised controlled trials or systematic reviews of a given implementation strategy. Unfortunately, reviews of implementation strategies consistently report effectiveness some, but not all of the time; possible causes of this variation are seldom reported or measured by the investigators in the original studies. Thus, any attempts to extrapolate from study settings to the real world are hampered by a lack of understanding of the effects of key elements of individuals, interventions, and the settings in which they were trialled. The explicit use of theory offers a way of addressing these issues and has a number of advantages, such as providing: a generalisable framework within which to represent the dimensions that implementation studies address, a process by which to inform the development and delivery of interventions, a guide when evaluating, and a way to allow for an exploration of potential causal mechanisms. However, the use of theory in designing implementation interventions is methodologically challenging for a number of reasons, including choosing between theories and faithfully translating theoretical constructs into interventions. The explicit use of theory offers potential advantages in terms of facilitating a better understanding of the generalisability and replicability of implementation interventions. However, this is a relatively unexplored methodological area
A Lorentz Invariant Pairing Mechanism: Relativistic Cooper Pairs
We study a Lorentz invariant pairing mechanism that arises when two
relativistic spin-1/2 fermions are subjected to a Dirac string coupling. In the
weak coupling regime, we find remarkable analogies between this relativistic
bound system and the well known superconducting Cooper pair. As the coupling
strength is raised, quenched phonons become unfrozen and dynamically contribute
to the gluing mechanism, which translates into novel features of this
relativistic superconducting pair.Comment: Revtex4 file, color figures with less resolution to comply with arxiv
restriction
- …