1,473 research outputs found

    Dissecting Massive YSOs with Mid-Infrared Interferometry

    Full text link
    The very inner structure of massive YSOs is difficult to trace. With conventional observational methods we often identify structures still several hundreds of AU in size. But we also need information about the innermost regions where the actual mass transfer onto the forming high-mass star occurs. An innovative way to probe these scales is to utilise mid-infrared interferometry. Here, we present first results of our MIDI GTO programme at the VLTI. We observed 10 well-known massive YSOs down to scales of 20 mas. We clearly resolve these objects which results in low visibilities and sizes in the order of 30 - 50 mas. Thus, with MIDI we can for the first time quantify the extent of the thermal emission from the warm circumstellar dust and thus calibrate existing concepts regarding the compactness of such emission in the pre-UCHII region phase. Special emphasis will be given to the BN-type object M8E-IR where our modelling is most advanced and where there is indirect evidence for a strongly bloated central star.Comment: 8 pages, 6 figures, proceedings contribution for the conference "Massive Star Formation: Observations confront Theory", held in September 2007 in Heidelberg, Germany; to appear in ASP Conf. Ser. 387, H. Beuther et al. (eds.

    Flexible Probabilistic Modeling for Search Based Test Data Generation

    Get PDF
    While Search-Based Software Testing (SBST) has improved significantly in the last decade we propose that more flexible, probabilistic models can be leveraged to improve it further. Rather than searching for an individual, or even sets of, test case(s) or datum(s) that fulfil specific needs the goal can be to learn a generative model tuned to output a useful family of values. Such generative models can naturally be decomposed into a structured generator and a probabilistic model that determines how to make non-deterministic choices during generation. While the former constrains the generation process to produce valid values the latter allows learning and tuning to specific goals. SBST techniques differ in their level of integration of the two but, regardless of how close it is, we argue that the flexibility and power of the probabilistic model will be a main determinant of success. In this short paper, we present how some existing SBST techniques can be viewed from this perspective and then propose additional techniques for flexible generative modelling the community should consider. In particular, Probabilistic Programming languages (PPLs) and Genetic Programming (GP) should be investigated since they allow for very flexible probabilistic modelling. Benefits could range from utilising the multiple program executions that SBST techniques typically require to allowing the encoding of high-level test strategies

    PYRAMIR: Calibration and operation of a pyramid near-infrared wavefront sensor

    Full text link
    The concept of pyramid wavefront sensors (PWFS) has been around about a decade by now. However, there is still a great lack of characterizing measurements that allow the best operation of such a system under real life conditions at an astronomical telescope. In this article we, therefore, investigate the behavior and robustness of the pyramid infrared wavefront sensor PYRAMIR mounted at the 3.5 m telescope at the Calar Alto Observatory under the influence of different error sources both intrinsic to the sensor, and arising in the preceding optical system. The intrinsic errors include diffraction effects on the pyramid edges and detector read out noise. The external imperfections consist of a Gaussian profile in the intensity distribution in the pupil plane during calibration, the effect of an optically resolved reference source, and noncommon-path aberrations. We investigated the effect of three differently sized reference sources on the calibration of the PWFS. For the noncommon-path aberrations the quality of the response of the system is quantified in terms of modal cross talk and aliasing. We investigate the special behavior of the system regarding tip-tilt control. From our measurements we derive the method to optimize the calibration procedure and the setup of a PWFS adaptive optics (AO) system. We also calculate the total wavefront error arising from aliasing, modal cross talk, measurement error, and fitting error in order to optimize the number of calibrated modes for on-sky operations. These measurements result in a prediction of on-sky performance for various conditions

    Detecting Extrasolar Planets with Integral Field Spectroscopy

    Get PDF
    Observations of extrasolar planets using Integral Field Spectroscopy (IFS), if coupled with an extreme Adaptive Optics system and analyzed with a Simultaneous Differential Imaging technique (SDI), are a powerful tool to detect and characterize extrasolar planets directly; they enhance the signal of the planet and, at the same time, reduces the impact of stellar light and consequently important noise sources like speckles. In order to verify the efficiency of such a technique, we developed a simulation code able to test the capabilities of this IFS-SDI technique for different kinds of planets and telescopes, modelling the atmospheric and instrumental noise sources. The first results obtained by the simulations show that many significant extrasolar planet detections are indeed possible using the present 8m-class telescopes within a few hours of exposure time. The procedure adopted to simulate IFS observations is presented here in detail, explaining in particular how we obtain estimates of the speckle noise, Adaptive Optics corrections, specific instrumental features, and how we test the efficiency of the SDI technique to increase the signal-to-noise ratio of the planet detection. The most important results achieved by simulations of various objects, from 1 M_J to brown dwarfs of 30 M_J, for observations with an 8 meter telescope, are then presented and discussed.Comment: 60 pages, 37 figures, accepted in PASP, 4 Tables adde

    VLTI observations of IRS~3: The brightest compact MIR source at the Galactic Centre

    Full text link
    The dust enshrouded star IRS~3 in the central light year of our galaxy was partially resolved in a recent VLTI experiment. The presented observation is the first step in investigating both IRS~3 in particular and the stellar population of the Galactic Centre in general with the VLTI at highest angular resolution. We will outline which scientific issues can be addressed by a complete MIDI dataset on IRS~3 in the mid infrared.Comment: 4 pages, 3 figures, published in: The ESO Messenge

    Test Set Diameter: Quantifying the Diversity of Sets of Test Cases

    Get PDF
    A common and natural intuition among software testers is that test cases need to differ if a software system is to be tested properly and its quality ensured. Consequently, much research has gone into formulating distance measures for how test cases, their inputs and/or their outputs differ. However, common to these proposals is that they are data type specific and/or calculate the diversity only between pairs of test inputs, traces or outputs. We propose a new metric to measure the diversity of sets of tests: the test set diameter (TSDm). It extends our earlier, pairwise test diversity metrics based on recent advances in information theory regarding the calculation of the normalized compression distance (NCD) for multisets. A key advantage is that TSDm is a universal measure of diversity and so can be applied to any test set regardless of data type of the test inputs (and, moreover, to other test-related data such as execution traces). But this universality comes at the cost of greater computational effort compared to competing approaches. Our experiments on four different systems show that the test set diameter can help select test sets with higher structural and fault coverage than random selection even when only applied to test inputs. This can enable early test design and selection, prior to even having a software system to test, and complement other types of test automation and analysis. We argue that this quantification of test set diversity creates a number of opportunities to better understand software quality and provides practical ways to increase it

    Online conferences – Towards a new (virtual) reality

    Get PDF
    The recent article: Nature 579, 327–328 (2020), ending with the phrase: “You can’t just suddenly make a conference be online.”, has motivated us to write about the practicalities and philosophy of running online events, drawing on our extensive experience running an annual online computational chemistry conference. Our goals for this online conference series have always been: (1) Availability; (2) Community building and (3) Supporting young scientists. In this article, we highlight the motivations behind our initiative, how this has influenced the organisation of our online meeting, and discuss the benefits as well as the drawbacks of virtual meetings. Virtual conferences may not fully replace in-person meetings, but they are rapidly becoming an accepted alternative format. We discuss the hybrid online/in-person conference format as a future possibility that may offer an opportunity to reduce the environmental impact and accessibility barriers associate with in-person meetings without comprising networking and community-building opportunities

    Prehospital anaesthesia by a physician and paramedic critical care team in Southwest England

    Get PDF
    OBJECTIVES: Prehospital anaesthesia using rapid sequence induction (RSI) is carried out internationally and in the UK despite equivocal evidence of clinical benefit. It is a core skill of the prehospital critical care service established by the Great Western Ambulance Service NHS Trust (GWAS) in 2008. This retrospective analysis of the service's first 150 prehospital RSIs describes intubation success rates and complications, thereby contributing towards the ongoing debate on its role and safety. METHODS: Within the GWAS critical care team, RSI is only carried out in the presence of a qualified physician and critical care paramedic (CCP). The role of the intubating practitioner is interchangeable between physician and CCP. Data were collected retrospectively from RSI audit forms and electronic patient monitor printouts. RESULTS: GWAS physician and CCP teams undertook 150 prehospital RSIs between June 2008 and August 2011. The intubation success rate was 82, 91 and 97% for the first, second and third attempts, respectively. Successful intubation on the first attempt was achieved in 58 (85%) and 64 (78%) patients for physicians and CCPs, respectively. RSI complications included hypoxaemia (10.2%), hypotension (9.7%) and bradycardia (1.3%). CONCLUSION: Prehospital RSI can be carried out safely, with intubation success rates and complications comparable with RSI in the emergency department. The variation in the intubation success rates between individual practitioners highlights the importance of ongoing performance monitoring, coupled with high standards of clinical governance and training. © 2013 Wolters Kluwer Health Lippincott Williams & Wilkins

    Mid-infrared interferometry of massive young stellar objects. I. VLTI and Subaru observations of the enigmatic object M8E-IR

    Get PDF
    [abridged] Our knowledge of the inner structure of embedded massive young stellar objects is still quite limited. We attempt here to overcome the spatial resolution limitations of conventional thermal infrared imaging. We employed mid-infrared interferometry using the MIDI instrument on the ESO/VLTI facility to investigate M8E-IR, a well-known massive young stellar object suspected of containing a circumstellar disk. Spectrally dispersed visibilities in the 8-13 micron range were obtained at seven interferometric baselines. We resolve the mid-infrared emission of M8E-IR and find typical sizes of the emission regions of the order of 30 milli-arcseconds (~45 AU). Radiative transfer simulations have been performed to interpret the data. The fitting of the spectral energy distribution, in combination with the measured visibilities, does not provide evidence for an extended circumstellar disk with sizes > 100 AU but requires the presence of an extended envelope. The data are not able to constrain the presence of a small-scale disk in addition to an envelope. In either case, the interferometry measurements indicate the existence of a strongly bloated, relatively cool central object, possibly tracing the recent accretion history of M8E-IR. In addition, we present 24.5 micron images that clearly distinguish between M8E-IR and the neighbouring ultracompact HII region and which show the cometary-shaped infrared morphology of the latter source. Our results show that IR interferometry, combined with radiative transfer modelling, can be a viable tool to reveal crucial structure information on embedded massive young stellar objects and to resolve ambiguities arising from fitting the SED.Comment: 7 pages, 5 figures, accepted for publication in A&A, new version after language editing, one important reference added, conclusions unchange
    • …
    corecore